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Abstract—Using the switching method, we give a classification for the Steiner quadruple systems
of order N > 8 and rank rN (different by 2 from the rank of the Hamming code of length N ) which
are embedded into the extended perfect binary codes of length N and the same rank. Some lower and
upper bounds are provided on the number of these different systems. The lower bound and description
of different Steiner quadruple systems of order N and rank rN which are not embedded into the
extended perfect binary codes of length N and the same rank are given.
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INTRODUCTION

Let F
n be the n-dimensional metric space over the Galois field GF (2) with respect to the Hamming

metric. The Hamming distance d(x, y) between every pair of vectors x and y from F
n is the number

of coordinates in which x and y differ. The Hamming weight w(x) of x ∈ F
n is the number of nonzero

coordinates of x. A nonempty subset C of F
n is a binary code. A vector subspace of F

n is a binary
linear code. The elements of C are called codewords. The parameters of a binary code C from F

n are
denoted by (n, |C|, d), where n is the length of the codewords (elements of the code), |C| is the size of
the code, and d is the minimum distance of the code (i.e., the minimum Hamming distance between the
codewords). The set of nonzero coordinate entries of a vector x ∈ F

n is called a support of x and denoted
by supp(x).

A binary code C of length n with distance d = 2d′ + 1 is called perfect one-error correcting (further
mentioned as perfect) if, for every vector x ∈ F

n, there exists only one codeword y in C such that
d(x, y) = 1. A linear perfect code of length n, called the Hamming code (we denote it by Hn), is unique
up to equivalence. It is known ([10]) that perfect codes have the following parameters: length n = 2r − 1
with r > 1, 2n−r codewords, and the minimum distance 3.

Let C be the extended perfect code of length N = 2r obtained from a perfect code C of length
2r − 1, r ≥ 2, by parity checking; i.e., adding the coordinate entry equals the sum by modulo 2 of all
other entries. In the sequel, we will consider only perfect and extended perfect codes containing all-zero
vector. The rank of a code C is the dimension of the linear span of C in F

n.
It is said that the code C ′ = (C\M)∪M ′ is obtained by a switching of M to M ′ in the binary code C

if C ′ has the same parameters as C, see [1]. The set M is called a component of C. The set M is
called the il-component of the code C of length N obtained from C by extending by lth coordinate
if M ′ = M ⊕ ei ⊕ el for some i ∈ {1, 2, . . . , N}, where ei and el are the vectors of weight 1 with 1 in
the ith and lth coordinate entries respectively. The set R is called the ijkl-component of C if R is the
t1t2-component for every t1, t2 ∈ {i, j, k, l}.
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It is known [20] that every extended perfect code of length N and rank rN − 1 = N − log N is
a Vasil’ev code [3]. The code can be constructed by switchings of il-components from an extended

Hamming code by some function λ : HN/2−1 → {0, 1}. Denote the code by V
N
λ . Up to equivalence the

code V
N
λ has the following representation:

V
N
λ =

{
(|x| + |y| + λ(y), |x| + λ(y), x + y, x) | x ∈ F

N/2−1, y ∈ HN/2−1
}
. (1)

Let V be some v-element set, a t-(v, k, λ)-design is a collection of blocks from v different elements
such that every block contains k different elements and each t-element subset from V is appeared in
exactly λ blocks. A 3-(v, 4, 1)-design is called a Steiner quadruple system of order v and denoted by
SQS(v) (or briefly SQS if the order of the system does not matter). Given a block (i, j, k, l) from SQS(v),
we match up the vector from F

n with 1 only in the ith, jth, kth, and lth coordinate entries. Further,
from the context it will always be clear if we consider blocks, supports, or vectors corresponding to
them. It is known [15] that SQS(v) exists if and only if v ≡ 2, 4 (mod 6). The supports of the codewords
of weight 4 in a code C define SQS(2r) [10]. The system SQS(H, N) corresponding to an extended

Hamming code HN
of length N is called the Hamming–Steiner quadruple system by analogy to

the Hamming–Steiner triple systems in [7, 12]. They are called also Boolean [5, 6]. Two SQSs are
equivalent if there exists a one-to-one correspondence of their ground sets mapping the blocks of one
system into the blocks of the other.

The main problem in this field is the classification and enumeration of all nonequivalent SQSs (see the
progress in [4, 5]). The best lower [17] and upper [14] bounds on the number N(v) of all nonequivalent
SQS(v)s are as follows:

2v3/24 ≤ N(v) ≤ 2v3 log v(1+o(1))/24 .

The rank of SQS(N), N = 2r , is the dimension of a linear subspace in F
N spanned over SQS(N).

It is known that the rank of SQS(N) can vary from rN − 2, which is the rank of the Hamming code of
length N − 1 [13], till the full rank N − 1.

The notion of switching for SQS is defined similarly to that for the extended perfect binary code. Two
sets R and R′ consisted of 4-element subsets of V are called equilibrium if every unordered triple of
elements, which can be found in the quadruples of one set, appears also in the quadruples of the other.
It is said that

SQS′(N) = (SQS(N)\R) ∪ R′

is obtained by a switching from the set of blocks R to the set of blocks R′ in SQS(N) if R and R′ are
equilibrium sets (see the definition of an equilibrium set in [11] and the description of switching methods
in [6]). In [6], the set R as far as the set R′ is called component.

In [21], the number R1(N) is obtained of different SQS(N)s of rank rN − 1 which is more by 1 than
the minimal possible rank:

R1(N) =
(
2|SQS(N/2)|−N/2 − 1/N

)
· N !/

∣
∣Sym(H, N/2)

∣
∣. (2)

A parallel class in 3-(N, 4, 1)-design, where N ≡ 0 (mod 4), is defined as the set of the N/4 pairwise
disjoint blocks. SQS(N) is called resolvable if the set of its blocks can be partition into

r = (N − 1)(N − 2)/6

nonintersecting parallel classes. In [5], the constructions of different SQS(N)s of rank at most rN are
presented. It is proved that all these systems are resolvable and the number of all different resolvable
SQSs having some fixed parallel class is found:

2N+2 · (N/4)! · 6N(N−4)/25 · 55296N(N−4)(N−8)/(3·29 )

N(N − 4)(N − 8) . . . (N − N/2)
.
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Since there exist N !/24N/4 different parallel classes; therefore, using [5], we obtain that the number of
all different SQS(N)s of rank at most rN is

2N+2 · N ! · (N/4)! · 6N(N−4)/25 · 55296N(N−4)(N−8)/(3·29 )

24N/4 · N(N − 4)(N − 8) · · · (N − N/2)
.

It is proved in [19] that only 15590 of 1054163 Steiner quadruple systems SQS(16) are embedded into
the perfect codes. It is shown in [22] that all Steiner triple systems of order n = N − 1 = 2r − 1 > 7 and
rank rN are embedded into some perfect codes, but the ranks of these codes are still unknown.

In [7], the construction of SQS embedded into the extended perfect binary codes built from an ex-
tended Hamming code by the method of ijkl-components is obtained. There is given the lower bound
on the number of different such systems. It is known [1] that the codes (and also the corresponding
SQSs) obtained by this method have the rank at most 2 more than the rank of the Hamming code. But
it was unknown if there exist other SQSs embedded into the extended perfect binary codes.

This paper is a development of [7, 8]. The main results are the following: a classification of SQS(N)s,
N = 2r > 8, of rank rN embedded into the extended perfect binary codes of length N and the same
rank; the proof that the class of SQS(N)s, N = 2r > 8, of rank rN obtained in [7] coincides with the
class of SQSs embedded into the extended perfect binary codes of length N and the same rank. It is
unclear if all SQSs with the rank that exceeds the rank of the Hamming SQS by at most 2 are embedded
in some extended perfect binary codes of bigger ranks. In [4], the classification of SQSs of rank rN − 1
using the concatenation approach is given; and it is shown that all these SQSs are embeddable into
the extended Vasil’ev codes of the same rank. In the presented paper, we give another proof of this fact
by the switching method. Moreover, we describe all SQS(N)s of rank rN that are not embeddable into
the extended perfect codes of length N obtained by the method of ijkl-component from an extended
Hamming code; and the lower bound is given on the number of these SQSs.

1. THE NUMBER OF DIFFERENT SQS(N)S OF RANKS rN − 1 AND rN

EMBEDDED INTO THE EXTENDED PERFECT CODES OF THE SAME RANKS

The order of the group of symmetries of an extended Hamming code HN
satisfies

|Sym(H, N)| = (N − 1)(N − 2)(N − 22)(N − 23) . . . N/2, (3)

see [10, Chapt. 13]. It is known that the rank of every extended perfect code V
N
λ of length N which is

obtained from a code HN
by switchings of il-components using some function λ is at most rN − 1.

Therefore, the same is true for the rank of SQS(N) corresponding to this extended perfect code, obtained
by switchings of il-components from a Hamming SQS(N). By this, applying the well-known Lindner’s
construction [18] for an SQS embedded into the extended perfect Vasil’ev codes, and also comparing with
the number of different SQS(N)s of rank at most rN − 1 (obtained in [21]), we prove by the switching
method that the class of SQS(N)s having rank rN − 1 coincides with the class of SQSs embedded into

the codes V
N
λ of the same rank. Another proof of this fact—using the concatenation construction—see

in [4].

Theorem 1. Each SQS(N) of rank rN − 1 is embeddable into some extended perfect Vasil’ev
code of length N and the same rank.

Proof. Let A be the incident matrix of a Hamming SQS(N) with N = 2r . The rows of the matrix are the
binary vectors of weight 4 with 1s in the coordinates corresponding to the blocks of this Hamming SQS.
Then (see [21]) the matrix G consisting of the rows of the matrix A and the vector (1, 1, 0, . . . , 0) is the
generating matrix of the code C which contains 2|SQS(N/2)| different SQS(N)s of rank at most rN − 1.
The number of different such codes is equal to

N !
2N/2 · |Sym(H, N/2)|

.
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Let us prove that every SQS of the code C is embedded into some extended Vasil’ev code V
N
λ of length

N and the same rank. Since every perfect code of length N and rank at most rN − 1 is an extended
Vasil’ev code [20], constructed from the Hamming code of length N/2 − 1 with some nonlinear function
λ; therefore, we have the embeddability of each SQS from C into some extended perfect code.

Up to equivalence an extended Hamming code HN
can be represented as

HN = {(|x| + |y|, |x|, x + y, x) | x ∈ F
N/2−1, y ∈ HN/2−1}. (4)

A codeword of weight 4 of the code C is either a row of the matrix A, or is obtained by adding

(1, 1, 0, . . . , 0) to the codeword of weight 4 from HN
having nonzero first or second coordinates (i.e.,

of the type (1, 0, . . .) or (0, 1, . . .)), or is obtained by adding (1, 1, 0, . . . , 0) to the codeword of weight 6
from HN

with the first two nonzero coordinates (i.e., of the type (1, 1, . . .)).

Let A0, A1, A2, and A3 denote the set of rows of the matrix A such that the first two elements are
equal to 1, the first element equals 1 and the second is 0, the first element is equal to 0 and the second
to 1, the first two elements equal 0 respectively.

Let B1, B2, and B3 stand for the sets of weight 4 of the vectors

• with the first coordinate equal to 1 and the second equal to 0 that are obtained by adding the vector
(1, 1, 0, . . . , 0) to the rows of A2,

• with the first coordinate equal to 0 and the second equal to 1 that are obtained by adding the vector
(1, 1, 0, . . . , 0) to the rows of A1,

• with the first two coordinates equal to 0 obtained by adding (1, 1, 0, . . . , 0) to the codewords of

weight 6 from HN
of the type (1, 1, . . .) with the first two nonzero coordinates.

Then, by [21], the different SQSs are obtained by switchings of some k′ rows of A123 = A1 ∪A2 ∪A3

by some appropriate k′ rows of the matrix B123 = B1 ∪B2 ∪B3. The sets of triples corresponding to the
rows will be equilibrium sets. The sets of such rows we also call equilibrium. Moreover, A123 and B123

can be partition into the subsets consisting of 8 blocks so that, for every eight blocks from A123, there
exits a unique set of eight blocks from B123; i.e.,

k′ = 8t′, 1 ≤ t′ ≤
⌊

(N + 3)(N − 2)(N − 4)
192

⌋
.

Define the function λ : HN/2−1 → {0, 1} for the code V
N
λ containing SQS obtained in result of the

following switching: for the vectors of weight 3 and (or) 4 corresponding to the k′ replaceable rows
of A123 and the k′ replacing rows of B123, put λ = 1; for the other vectors from HN/2−1 put λ = 0.

Let y ∈ HN/2−1 be a vector with the support {a1, a2, a3}, where λ = 1. Then, in F
N/2−1, there exist

the three vectors of weight 1 intersecting y in one coordinate entry. By the construction of V
N
λ , every of

these three vectors together with y defines the weight 4 vectors in V
N
λ of the type

(
1, a2, a3,

N

2
+ 1 + a1

)
,

(
1, a1, a3,

N

2
+ 1 + a2

)
,

(
1, a1, a2,

N

2
+ 1 + a3

)
,

corresponding to the weight 4 vectors in HN of the type
(
2, a2, a3,

N

2
+ 1 + a1

)
,

(
2, a1, a3,

N

2
+ 1 + a2

)
,

(
2, a1, a2,

N

2
+ 1 + a3

)

respectively.
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We can find the three weight 2 vectors in F
N/2−1 intersecting y in two coordinate entries. By the

construction of V
N
λ , every of these vectors together with y generates the weight 4 vectors in V

N
λ of the

type
(
2, a3,

N

2
+ 1 + a1,

N

2
+ 1 + a2

)
,

(
2, a2,

N

2
+ 1 + a1,

N

2
+ 1 + a3

)
,

(
2, a1,

N

2
+ 1 + a2,

N

2
+ 1 + a3

)
,

that correspond to weight 4 vectors in HN of the type
(
1, a3,

N

2
+ 1 + a1,

N

2
+ 1 + a2

)
,

(
1, a2,

N

2
+ 1 + a1,

N

2
+ 1 + a3

)
,

(
1, a1,

N

2
+ 1 + a2,

N

2
+ 1 + a3

)

respectively.

Moreover, using the vector 0N/2−1 and the weight 3 vector from F
N/2−1 with the support {a1, a2, a3},

we additionally obtain the vectors from V
N
λ of the types

(2, a1, a2, a3),
(
1,

N

2
+ 1 + a1,

N

2
+ 1 + a2,

N

2
+ 1 + a3

)

corresponding to the weight 4 vectors in HN of the types

(1, a1, a2, a3),
(
2,

N

2
+ 1 + a1,

N

2
+ 1 + a2,

N

2
+ 1 + a3

)

respectively.

In result, we have the two equilibrium sets in V
N
λ and HN

, each one containing eight quadruples.

Let y = (b1, b2, b3, b4) be the vector with the support {b1, b2, b3, b4} such that λ(y) = 1. In F
N/2−1,

there exist the four weight 1 vectors intersecting y in one coordinate entry. By the construction of V
N
λ ,

these vectors together with y define the weight 4 vectors in V
N
λ of the type

(
b2, b3, b4,

N

2
+ 1 + b1

)
,

(
b1, b3, b4,

N

2
+ 1 + b2

)
,

(
b1, b2, b4,

N

2
+ 1 + b3

)
,

(
b1, b2, b3,

N

2
+ 1 + b4

)
.

The four weight 3 vectors exist in F
N/2−1 which intersect y in three coordinate entries. By the

construction of V
N
λ , each of them together with y generates the weight 4 vectors in V

N
λ of the type

(
b4,

N

2
+ 1 + b1,

N

2
+ 1 + b2,

N

2
+ 1 + b3

)
,

(
b3,

N

2
+ 1 + b1,

N

2
+ 1 + b2,

N

2
+ 1 + b4

)
,

(
b2,

N

2
+ 1 + b1,

N

2
+ 1 + b3,

N

2
+ 1 + b4

)
,

(
b1,

N

2
+ 1 + b2,

N

2
+ 1 + b3,

N

2
+ 1 + b4

)
.

There exist the six weight 2 vectors in F
N/2−1 intersecting y in some two coordinates so that, by the

construction (4), together with y they define in HN
the following weight 4 vectors of the type

(
b3, b4,

N

2
+ 1 + b1,

N

2
+ 1 + b2

)
,

(
b2, b4,

N

2
+ 1 + b1,

N

2
+ 1 + b3

)
,

(
b2, b3,

N

2
+ 1 + b1,

N

2
+ 1 + b4

)
,

(
b1, b4,

N

2
+ 1 + b2,

N

2
+ 1 + b3

)
,

(
b1, b3,

N

2
+ 1 + b2,

N

2
+ 1 + b4

)
,

(
b1, b2,

N

2
+ 1 + b3,

N

2
+ 1 + b4

)
.
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Moreover, we have in F
N/2−1 the unique all-zero vector and a unique weight 4 vector with the support

{b1, b2, b3, b4} such that, by the construction (4), together with y they define the weight 4 vectors in HN

of the type

(b1, b2, b3, b4),
(N

2
+ 1 + b1,

N

2
+ 1 + b2,

N

2
+ 1 + b3,

N

2
+ 1 + b4

)

respectively. Therefore, we can conclude that we obtain the two equilibrium sets and each contains eight

vectors. These are the subsets from V
N
λ and HN

respectively. Note that the sets of quadruples from the
first and second cases under consideration do not intersect each other. Both equilibrium sets of eight
quadruples correspond to the switchings described in [21].

Hence, the system SQS obtained by switchings of some k′ row of the matrix A1 ∪ A2 ∪ A3 by

equilibrium k′ rows of B1 ∪ B2 ∪ B3 is embeddable into the code V
N
λ by the above-defined function λ.

Since all extended codes of length N of the rank at most rN − 1 are the Vasil’ev codes of length N

obtained from the Hamming code HN/2−1 by construction (1), each SQS(N) of rank rN − 1 is
embeddable into some extended perfect Vasil’ev code of length N and rank rN − 1. Moreover, there
exist

2|SQS(N/2)|−N/2 · N !/|Sym(H, N/2)

different such SQSs. Taking it into account that, by [21], the number of SQS(N)s having rank rN − 2 is
equal to N !/N · |Sym(H, N/2)|, we obtain (2). This completes the proof of Theorem 1.

Note that the described switchings correspond to the switchings under transition from SQS(N)
obtained by the Hahani’s construction [16] to SQS(N) obtained by the Aliev’s construction [2]. It is
known that the Lindner’s construction is a generalization of the Hahani’s construction [18].

Let R(H, N) denote the number of different SQS(H, N)s of order N . Taking into account (3), we
have

R(H, N) =
N !

|Sym(H, N)|
.

By [1], the rank of an extended perfect code of length N obtained from an extended Hamming code
of length N by switchings of ijkl-components is at most rN . Therefore, the rank of SQS(N) obtained
from a Hamming SQS(N) by switchings of ijkl-components is at most rN . We have

Theorem 2 [9]. Each extended perfect binary code C of length N and rank at most rN can be
obtained from some extended Hamming code by consecutive switchings of il-components using
at most two coordinates (il- and jl- for some i, j, l).

In [7, Theorem 4], it is presented the construction of a Steiner quadruple system and the corre-
sponding switchings of il- and ijkl-components which allow us to obtain from a Hamming SQS(N)
some SQS(N) of a bigger rank. Denote the class of SQS(N)s of rank r obtained in such a way by
Sw(SQS(N), r).

Let

P (N) =
(

2296
N(N−4)(N−8)

3·29 ·
(
2

N(N−4)
32 − 1

)
− N2 + 12N + 8

4

)
· N(N − 1)(N − 2)

8
,

S(N) = 2|SQS(N
2

)|−N
2 · N !

|Sym(H, N/2)|
.

The main result of this paper is

Theorem 3. The class Sw(SQS(N), rN ) coincides with the class of SQS(N)s embeddable into
the perfect codes of the same rank constructed from an extended Hamming code of length N by
the method of ijkl-components. The number R2(N) of these different SQSs satisfies

P (N) · R(H, N/4) − S(N) ≤ R2(N) ≤ P (N) · R(H, N) − S(N).
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Proof. By Theorem 4 in [7], the number of SQS(N)s built by the method of ijkl-components from
a fixed SQS(N/4) and the set {i, j, k, l} is equal to

2296
N(N−4)(N−8)

3·29 · 3 ·
(
2

N(N−4)

25 − 1
)
.

Note that SQS(N)s obtained from different SQS(N/4)s by means of different switchings are dis-
tinguished. Indeed, let S1(N) and S2(N) be two equal SQS(N)s obtained by method of switchings of
ijkl-components from different SQSs, say S1(N/4) and S2(N/4) of order N/4, by means of different
switchings. Then there exist some different elements a, b, c, d, and e from the set M such that

(a, b, c, d) ∈ S1(N/4), (a, b, c, e) ∈ S2(N/4).

For the equality of S1(N) and S2(N) it is necessary that for the two collections of 64 quadruples
corresponding to the matrices Tabcd and Tabce (see [7]) be obtained one from the other by the switchings

d ↔ e, id ↔ ie, jd ↔ je, kd ↔ ke.

But the method of ijkl-components admits the switchings of elements of the form d, id, jd, kd which
belong to the same column of the initial table and does not admit the switchings between the elements
of the form did, jd, kd and e, ie, je, ke which belong to different columns of the initial table. Therefore, it is
impossible to obtain some equal SQS(N/4) from different SQS(N/4)s by means of different switchings.

As we choose an arbitrary quadruple (i, j, k, l) from SQS(N), we have

2296
N(N−4)(N−8)

3·29 · 3 · (2
N(N−4)

25 − 1) · |SQS(N)| · R(H, N/4) (5)

systems of order N . Let us understand which of them can coincide.
Consider an arbitrary SQS(H, N) that corresponds to a fixed table TM (see [7]) and a SQS(H, N/4).

While different partitions of the system SQS(H, N) into the components and further applying switchings
of ijkl-components to it, the same SQS(H, N) can appear. Let us carefully study these situations.

Fix some quadruple (i, j, k, l) ∈ SQS(H, N) and an arbitrary element from {i, j, k}, for example, i.
In this case, we have a partition of the initial SQS(H, N) into il-components. It is easy to see that
SQS(N) that is obtained from the initial SQS(H, N) by switching l ↔ i applied to all quadruples
containing the elements l or i coincides with SQS(H′

, N) that corresponds to the Hamming code
H′ = (li)H obtained from the code H by applying the permutation (li). The same is true for switchings
j ↔ k, a ↔ ia, and ja ↔ ka for each a ∈ M\l, as well as for the partition of the initial SQS(H, N) into
jl- and kl-components; i.e., for the switchings

l ↔ j, i ↔ k, a ↔ ja, ia ↔ ka, and l ↔ k, i ↔ j, a ↔ ka, ia ↔ ja

for each a ∈ M\l. Hence, we have 3 · 2 · (1 + (N/4 − 1)) = 3N/2 repetitions.
We can also partition the initial SQS(H, N) into il-components and first apply the switching l ↔ i

to all ijkl-components of this SQS(H, N), containing the elements l and i; after that we can choose
the element j or k and apply one of the switchings l ↔ j, i ↔ k, a ↔ ja, ia ↔ ka for each a ∈ M\l or
l ↔ k, i ↔ j, a ↔ ka, ia ↔ ja for each a ∈ M\l to all lj- or lk-components, containing elements from
the chosen switching. The so-obtained SQS(N) coincides with the SQS(H ′, N) corresponding to one
of the Hamming codes

(lij)H, (lki)H, (li)(aja)H, (li)(iaka)H or (lik)H, (lji)H, (li)(aka)H, (li)(iaja)H,

obtained from H by means of the corresponding permutations. It is easy that these two codes coincide.
The same argumentations are also true if we would choose one of the switchings j ↔ k, a ↔ ia,

and ja ↔ ka as the initial switching and if the initial SQS(H, N) would be partitioned into jl- or kl-
components. Thus, we have 3 · 4 · 2 · (1 + 1 + N/4 − 1 + N/4 − 1) = 12N repetitions.

Let us note that SQS(N) which is obtained from the initial SQS(H, N) while partitioning it into
ijkl-components and further applying the switching a ↔ ia to all il-components containing a and ia
coincides with SQS′(N) which is obtained from the initial SQS(H,N) while partitioning it into iiat1t2-
components and further applying the switching a ↔ ia to all iia-components containing a and ia. Since
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there exist exactly N/2 − 1 quadruples of the type iiat1t2, we obtain N/2 − 1 repetitions. The same
fact is true for the switching ja ↔ ka and also for the switchings a ↔ ja and ia ↔ ka applied to the jl-
components, as well as for the switchings a ↔ ka and ia ↔ ja, applied to the kl-components. Hence,
we obtain 6(N/2 − 1) repetitions. These argumentations are true for every a ∈ M\l; therefore, we have
(N/4 − 1)(3N − 6) = 3(N − 2)(N − 4)/4 repetitions.

Thereby, for the chosen partitioning into ijkl-components we obtain

3N/2 + 12N + 3(N − 2)(N − 4)/4 = 3(N2 + 12N + 8)/4

repetitions. Since (i, j, k, l) is an arbitrary quadruple from SQS(H, N), where

|SQS(H, N)| = N(N − 1)(N − 2)/24,

we have the total of

N(N − 1)(N − 2)(N2 + 12N + 8)/32

repetitions. Taking into account the calculated in (5) number of SQS(N)s which includes the identical
ones, we obtain the lower bound of the number of different SQS(N)s built from a fixed table Q and base
SQS(m) by means of the above-mentioned construction:

(
2296

N(N−4)(N−8)

3·29 ·
(
2

N(N−4)

25 − 1
)
− N2 + 12N + 8

4

)
· N(N − 1)(N − 2)

8
.

Since there exist R(H, N/4) extended binary Hamming codes, we have at least
(

2296
N(N−4)(N−8)

3·29 ·
(
2

N(N−4)

25 − 1
)
− N2 + 12N + 8

4

)
· N(N − 1)(N − 2)

8
· R(H,N/4)

extended perfect codes of length N that are built from the extended Hamming code of length N by
means of the switchings of ijkl-components. The switchings of ijkl-components can be applied to
at most R(H, N) extended Hamming codes of length N ; therefore, we have at most

(
2296

N(N−4)(N−8)

3·29 ·
(
2

N(N−4)

25 − 1
)
− N2 + 12N + 8

4

)
· N(N − 1)(N − 2)

8
· R(H, N)

extended perfect codes of length N which can be obtained from the extended Hamming code of length
N by switchings of ijkl-components and to which all different SQS(N)s of rank at most rN correspond.

By Theorem 2, we obtain that there is no other SQS(N)s of rank at most rN embeddable into extended
perfect binary codes of the same rank. Since, by Theorem 1, there exist exactly

2|SQS(N/2)|−N/2 · N !
/
|Sym(H, N/2)|

different SQS(N)s of rank at most rN − 1 embedded into extended perfect codes of length N and the
same rank, we have the bound given in the statement of the theorem.

The proof of Theorem 3 is complete.

2. THE STEINER QUADRUPLE SYSTEMS NOT EMBEDDED
INTO THE EXTENDED PERFECT CODES OBTAINED BY THE METHOD

OF SWITCHING OF ijkl-COMPONENTS

Theorem 4. Let R′(N) be the number of different SQS(N)s of order N ≥ 128 and rank rN which
are not embeddable into the extended perfect binary codes that are obtained by the method of
switching of the ijkl-components from an extended binary Hamming code. Then

R′(N) ≥ N(N − 4)(N − 8)
3 · 29

·
(

N2 + 16N − 512
32

)N/64−1

· 18912 N
64 · R(H, N/4).
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Table 1.

R1abcl
il R2abcl

il R3abcl
il R4abcl

il R5abcl
il R6abcl

il R7abcl
il R8abcl

il

abcl ajbjcl jabjcl jajbcl jabjc jajbc jjabc jjajbjc

aibicl akbkcl jaibkcl jakbicl jaibkc jakbic jjaibic jjakbkc

iabicl iajbkcl kabkcl kajbicl jiabkc jiajbic jkabic jkajbkc

iaibcl akbjcl kaibjcl kakbcl jiaibjc jiakbc jkaibc jkakbjc

iabic iajbkc ijabkc ijajbic kabkc kajbic kjabic kjajbkc

iaibc iakbjc ijaibjc ijakbc kaibjc kakbc kjaibc kjakbjc

iiabc iiajbjc ikabjc ikajbc kiabjc kiajbc kkabc kkajbjc

iiaibic iiakbkc ikaibjc ikakbic kiaibkc kiakbic kkaibic kkakbkc

Proof. Consider SQS(H,N) obtained by the method of [7, Theorem 1] and the components Rabcl
ijkl

and R1
il therein. Recall that R1

il is the linear span of the vectors with the supports

{ijkl, iaial, ijakal | a ∈ M\l}.
The component Rabcl

ijkl and its partitioning into il-components R1abcl
il , . . . , R8abcl

il are represented in
Table 1.

Every component R1abcl
il , . . . , R8abcl

il can be partitioned into two subsets of equal total size so that to
R1abcl

1il and R1abcl
2il , . . . , R8abcl

1il and R8abcl
2il there corresponds the same four-element subset R1il, . . . , R8il

from R1
il respectively; and moreover, for each of the sets

R1abcl
1il ∪ R1il, R1abcl

2il ∪ R1il, . . . , R8abcl
1il ∪ R8il, R8abcl

2il ∪ R8il,

the switchings of elements which transform these sets to the equilibrium are allowable.
For example, the component

R1abcl
il = {abcl, aibicl, iabicl, iaibcl, iabic, iaibc, iiabc, iiaibic}

can be represented as

R1abcl
il = {abcl, aibicl, iiabc, iiaibic} ∪ {iabicl, iaibcl, iabic, iaibc},

i.e.,

R1abcl
1il = {abcl, aibicl, iiabc, iiaibic}, R1abcl

2il = {iabicl, iaibcl, iabic, iaibc}.
Then the set corresponding to them looks as

R1il = {ibibl, icicl, abiaib, aciaic},
and each of the sets R1abcl

1il ∪ R1il and R1abcl
2il ∪ R1il allows the switchings

b ↔ ic, l ↔ ia, a ↔ ia, c ↔ ib

and

b ↔ c, ib ↔ ic, l ↔ a, i ↔ ia

correspondingly. Each of the switchings

b ↔ ic, l ↔ ia, a ↔ ia, c ↔ ib

transforms the initial set R1abcl
1il ∪ R1il into the same set equilibrium to it. Also, each of the switchings

b ↔ c, ib ↔ ic, l ↔ a, i ↔ ia
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transforms the initial set R1abcl
2il ∪ R1il to the same equilibrium set.

There exist at least three such different partitions of each of the components R1abcl
il , . . . , R8abcl

il .
Let us note that the above-listed cases do not exhaust all possibilities, which allows us to obtain

only the lower bound on the number of SQS(N)s of rank rN such that they are not embeddable into the
extended perfect binary codes of length N and the same rank.

In Tables 2–4, all partitions of the components, the sets from R1
il corresponded to them, and the

possible switchings in each of the three cases are specified. Many of the sets Rs
ril, r ∈ {1, . . . , 8} and

s ∈ {1, 2, 3}, intersect between themselves for fixed s and different r as well as for different s and r.
Therefore, it is impossible to apply switchings to all of the sets independently.

From the Tables 2, 3, and 4 we can see that the sets

R1
1il, R1

2il, R1
7il, R1

8il and R1
3il, R1

4il, R1
5il, R1

6il;

R2
1il, R2

3il, R2
6il, R2

8il and R2
2il, R2

4il, R2
5il, R2

7il;

R3
1il, R3

4il, R3
5il, R3

8il and R3
2il, R3

3il, R3
6il, R3

7il

correspondingly do not intersect between themselves. Thereby, we have 6 collections of pairwise disjoint
sets.

Since to each of the four sets of the form Rs
ril from every collection there correspond two sets of the form

Rrabcl
1il ∪Rs

ril and Rrabcl
2il ∪Rs

ril, and we can apply (or do not apply) the allowable switching to any of them;
therefore, each collection allows 34 − 1 different switchings. Also, the next composite sets compounded
from different Tables 2–4 do not intersect each other:

R1
1il, R1

8il, R2
2il, R2

7il, R3
4il, R3

5il; R1
1il, R1

8il, R2
3il, R2

6il, R3
2il, R3

7il;

R1
2il, R1

7il, R2
1il, R2

8il, R3
3il, R3

6il; R1
2il, R1

7il, R2
4il, R2

5il, R3
1il, R3

8il;

R1
3il, R1

6il, R2
1il, R2

8il, R3
4il, R3

5il; R1
3il, R1

6il, R2
4il, R2

5il, R3
2il, R3

7il;

R1
4il, R1

5il, R2
2il, R2

7il, R3
3il, R3

6il; R1
4il, R1

5il, R2
3il, R2

6il, R3
1il, R3

8il.

Hence we also have eight collections of pairwise disjoint sets. Since two sets of the form Rrabcl
1il ∪ Rs

ril

and Rrabcl
2il ∪ Rs

ril correspond to each of the six sets of the form Rs
ril from every collection and we can

apply (or do not apply) an allowable switching to each of them; therefore, each collection allows 36 − 1
different switchings.

As far as the above-listed tables contain the partitions of the components and the switchings which
transform them to the equilibrium sets, the resulting quadruple systems are SQSs. Hence, for the
partition of Rabcl

ijkl into il-components we obtain at least

6 · (34 − 1) + 8 · (36 − 1) = 2 · 35(1 + 12) − 14 = 6304

different switchings. For the partition of Rabcl
ijkl into jl- and kl-components the situation is similar.

Therefore, for each quadruple from SQS(N/4), we have 3 · 6304 = 18912 different switchings. In order for
switchings could be applied to the components of the form Rαt

ijkl for different quadruples αt ∈ SQS(N/4)
independently, these quadruples should not have common elements. As for each quadruple αt from
SQS(N/4) there exist 4(N − 4)(N − 8)/3 · 25 quadruples which have the only common element with
the initial quadruple, and there exist 3N/4 − 18 quadruples which have two common elements with the
initial quadruple, for αt there are exactly

z = (N − 4)(N − 8)/3 · 23 + 3N/4 − 18 = (N2 + 6N − 376)/24

quadruples having common elements with it and

|SQS(N/4)| − 1 − z =
(N − 4)(N − 8)(N − 64)

3
· 29 − 3N

4
+ 17
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Table 2.

Rrabcl
1il Rrabcl

2il R1
ril switchings Rrabcl

1il ∪ R1
ril switchings Rrabcl

2il ∪ R1
ril

labc liabic libib b ↔ ic b ↔ c

laibic liaibc licic l ↔ ia ib ↔ ic

iiabc iaibc abiaib a ↔ i l ↔ a

iiaibic iabic aciaic c ↔ ib i ↔ ia

jjabc jkabic jkbib b ↔ ic b ↔ c

jjaibic jkaibc jkcic c ↔ ib ib ↔ ic

kkabc kjabic jakabib j ↔ ka j ↔ ja

kkaibic kjaibc jakacic k ↔ ja k ↔ ka

jajbc jiajbic jkjbkb jb ↔ ic jb ↔ c

jakbic jiakbc jkcic kb ↔ c kb ↔ ic

kiajbc kajbic aiajbkb j ↔ ia j ↔ a

kiakbic kakbc aiacic k ↔ a k ↔ ia

jabjc jiabkc jkbib b ↔ kc b ↔ jc

jaibkc jiaibjc jkjckc ib ↔ jc ib ↔ kc

kiabjc kabkc aiabib j ↔ ia j ↔ a

kiaibkc kaibjc aiajckc k ↔ a k ↔ ia

ljajbc lkajbic lijbkb jb ↔ ic jb ↔ c

ljakbic lkakbc licic kb ↔ c kb ↔ ic

ikajbc ijajbic jakajbkb l ↔ ka l ↔ ja

ikakbic ijakbc jakacic i ↔ ja i ↔ ka

ljabjc lkabkc libib b ↔ kc b ↔ jc

ljaibkc lkaibjc lijckc ib ↔ jc ib ↔ kc

ikabjc ijabkc jakabib l ↔ ka l ↔ ja

ikaibkc ijaibjc jakajckc i ↔ ja i ↔ ka

lajbjc liajbkc lijbkb jb ↔ kc jb ↔ jc

lakbkc liakbjc lijckc kb ↔ jc kb ↔ kc

iiajbjc iajbkc aiajbkb l ↔ ia l ↔ a

iiakbkc iakbjc aiajckc i ↔ a i ↔ ia

jjajbjc jkajbkc jkjbkb jb ↔ kc jb ↔ jc

jjakbkc jkakbjc jkjckc kb ↔ jc kb ↔ kc

kkajbjc kjajbkc jakajbkb j ↔ ka j ↔ ja

kkakbkc kjakbjc jakajckc k ↔ ja k ↔ ka
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Table 3.

Rrabcl
1il Rrabcl

2il R2
ril switchings Rrabcl

1il ∪ R2
ril switchings Rrabcl

2il ∪ R2
ril

labc laibic liaia a ↔ ic a ↔ c

liabic liaibc licic ia ↔ c ia ↔ ic

iaibc iabic abiaib l ↔ ib l ↔ b

iiaibic iiabc bcibic i ↔ b i ↔ ib

jjabc jjaibic jkjaka ja ↔ ic ja ↔ c

jkabic jkaibc jkcic ka ↔ c ka ↔ ic

kjaibc kjabic jakabib j ↔ ib j ↔ b

kkaibic kkabc bcibic k ↔ b k ↔ ib

jajbc jakbic jkaia a ↔ ic a ↔ c

jiajbic jiakbc jkcic ia ↔ c ia ↔ ic

kakbc kajbic jbkbaia j ↔ kb j ↔ jb

kiakbic kiajbc jbkbcic k ↔ jb k ↔ kb

jabjc jaibkc jkaia a ↔ kc a ↔ jc

jiabkc jiaibjc jkjckc ia ↔ jc ia ↔ kc

kaibjc kabkc aiabib j ↔ ib j ↔ b

kiaibkc kiabjc bibjckc k ↔ b k ↔ ib

ljajbc ljakbic lijaka ja ↔ ic ja ↔ c

lkajbic lkakbc licic ka ↔ c ka ↔ ic

ijakbc ijajbic jakajbkb l ↔ kb l ↔ jb

ikakbic ikajbc jbkbcic i ↔ jb i ↔ kb

ljabjc ljaibkc lijaka ja ↔ kc ja ↔ jc

lkabkc lkaibjc lijckc ka ↔ jc ka ↔ kc

ijaibjc ijabkc jakabib l ↔ ib l ↔ b

ikaibkc ikabjc bibjckc i ↔ b i ↔ ib

lajbjc lakbkc liaia a ↔ kc a ↔ jc

liajbkc liakbjc lijckc ia ↔ jc ia ↔ kc

iakbjc iajbkc aiajbkb l ↔ kb l ↔ jb

iiakbkc iiajbjc jbkbjckc i ↔ jb i ↔ kb

jjajbjc jjakbkc jkjaka ja ↔ kc ja ↔ jc

jkajbkc jkakbjc jkjckc ka ↔ jc ka ↔ kc

kjakbjc kjajbkc jakajbkb j ↔ kb j ↔ jb

kkakbkc kkajbjc jbkbjckc k ↔ jb k ↔ kb
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Table 4.

Rrabcl
1il Rrabcl

2il R3
ril switchings Rrabcl

1il ∪ R3
ril switchings Rrabcl

2il ∪ R3
ril

labc laibic liaia a ↔ ib a ↔ b

liaibc liabic libib ia ↔ b ia ↔ ib

iabic iaibc aciaic l ↔ ic l ↔ c

iiaibic iiabc bcibic i ↔ c i ↔ ic

jjabc jjaibic jkjaka ja ↔ ib ja ↔ b

jkaibc jkabic jkbib ka ↔ b ka ↔ ib

kjabic kjaibc jakacic j ↔ ic j ↔ c

kkaibic kkabc bibcic k ↔ c k ↔ ic

jajbc jakbic jkaia a ↔ kb a ↔ jb

jiakbc jiajbic jkjbkb ia ↔ jb ia ↔ kb

kajbic kakbc aiacic j ↔ ic j ↔ c

kiakbic kiajbc jbkbcic k ↔ c k ↔ ic

jabjc jaibkc jkaia a ↔ ib a ↔ b

jiaibjc jiabkc jkbib ia ↔ b ia ↔ ib

kabkc kaibjc aiajckc j ↔ kc j ↔ jc

kiaibkc kiabjc bibjckc k ↔ jc k ↔ kc

ljajbc ljakbic lijaka ja ↔ kb ja ↔ jb

lkakbc lkajbic lijbkb ka ↔ jb ka ↔ kb

ijajbic ijakbc jakacic l ↔ ic l ↔ c

ikakbic ikajbc jbkbcic i ↔ c i ↔ ic

ljabjc ljaibkc lijaka ja ↔ ib ja ↔ b

lkaibjc lkabkc libib ka ↔ b ka ↔ ib

ijabkc ijaibjc jakajckc l ↔ kc l ↔ jc

ikaibkc ikabjc bibjckc i ↔ jc i ↔ kc

lajbjc lakbkc liaia a ↔ kb a ↔ jb

liakbjc liajbkc lijbkb ia ↔ jb ia ↔ kb

iajbkc iakbjc aiajckc l ↔ kc l ↔ jc

iiakbkc iiajbjc jbkbjckc i ↔ jc i ↔ kc

jjajbjc jjakbkc jkjaka ja ↔ kb ja ↔ jb

jkakbjc jkajbkc jkjbkb ka ↔ jb ka ↔ kb

kjajbkc kjakbjc jakajckc j ↔ kc j ↔ jc

kkakbkc kkajbjc jbkbjckc k ↔ jc k ↔ kc
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quadruples pairwise disjoint with αt. Therefore, the first quadruple for a switching inside the component
Rabcl

ijkl can be chosen among all |SQS(N/4)| quadruples, and the second quadruple, which has no
common elements with the first one, can be chosen among |SQS(N/4)| − z − 1 quadruples. The third
quadruple, which has no common elements with the first and second quadruples, can be chosen among
the rest of |SQS(N/4)| − 2(z + 1) quadruples. Proceeding the process in this way, it is easy to see that
we can find at least N/64 pairwise disjoint quadruples which do not have common elements. Then, there
exist at least

|SQS(N/4)| ·
(
|SQS(N/4)| − (z + 1)

)
·
(
|SQS(N/4)| − 2(z + 1)

)

× . . . ×
(
|SQS(N/4)| − (N/64 − 1)(z + 1)

)

> |SQS(N/4)| ·
(

N2 + 16N − 512
32

)N/64−1

variants of such collections of 64 quadruples. As far as, given an arbitrary quadruple, there exist at least
18912 different switchings and each of them transforms the initial component into an equilibrium set,
there exist at least

N(N − 4)(N − 8)
3 · 29

·
(

N2 + 16N − 512
32

)N/64−1

· 18912 N
64

different switchings transforming the initial SQS into different SQS(N)s. The resulting systems are
different because the different subsets of the initial set of quadruples are involved in these switchings.
As for the initial SQS(N/4) we can take each of the Hamming quadruple systems of order N/4, the
bound in the assertion becomes evident. Rank of these SQS(N)s depends on the rank of SQS(N/4) and
can exceed rN .

In result of these switchings, neither il-, nor jl-, nor kl-component of the initial SQS changes
completely. So, after applying the above switchings, the resultant systems do not coincide with the
SQSs corresponding to the extended perfect codes obtained from the extended Hamming code by the
switchings of ijkl-components.

The proof of Theorem 4 is complete.

Corollary. The rank r(SQS(N)) of the system SQS(N) obtained by means of switchings in
Theorem 4 from some SQS(N/4) of rank r(SQS(N/4)) satisfies

r(SQS(N)) ≥ r(SQS(N/4)) + 3N/4 − 1.

The question about embedding of SQSs in Theorem 4 into the extended perfect codes is still open.
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