Steiner Quadruple Systems of Small Rank and Extended Perfect Binary Codes

D. I. Kovalevskaya ${ }^{1 *}$ and F. I. Solov'eva ${ }^{1,2 * *}$
${ }^{1}$ Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
${ }^{2}$ Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Received October 11, 2012; in final form, June 6, 2013

Abstract

Using the switching method, we give a classification for the Steiner quadruple systems of order $N>8$ and rank r_{N} (different by 2 from the rank of the Hamming code of length N) which are embedded into the extended perfect binary codes of length N and the same rank. Some lower and upper bounds are provided on the number of these different systems. The lower bound and description of different Steiner quadruple systems of order N and rank r_{N} which are not embedded into the extended perfect binary codes of length N and the same rank are given.

DOI: 10.1134/S1990478913040078
Keywords: Steiner quadruple system, extended perfect binary code, switching, il- and ijklcomponents, rank

INTRODUCTION

Let \mathbb{F}^{n} be the n-dimensional metric space over the Galois field $G F(2)$ with respect to the Hamming metric. The Hamming distance $d(x, y)$ between every pair of vectors x and y from \mathbb{F}^{n} is the number of coordinates in which x and y differ. The Hamming weight $w(x)$ of $x \in \mathbb{F}^{n}$ is the number of nonzero coordinates of x. A nonempty subset C of \mathbb{F}^{n} is a binary code. A vector subspace of \mathbb{F}^{n} is a binary linear code. The elements of C are called codewords. The parameters of a binary code C from \mathbb{F}^{n} are denoted by $(n,|C|, d)$, where n is the length of the codewords (elements of the code), $|C|$ is the size of the code, and d is the minimum distance of the code (i.e., the minimum Hamming distance between the codewords). The set of nonzero coordinate entries of a vector $x \in \mathbb{F}^{n}$ is called a support of x and denoted by $\operatorname{supp}(x)$.

A binary code C of length n with distance $d=2 d^{\prime}+1$ is called perfect one-error correcting (further mentioned as perfect) if, for every vector $x \in \mathbb{F}^{n}$, there exists only one codeword y in C such that $d(x, y)=1$. A linear perfect code of length n, called the Hamming code (we denote it by \mathcal{H}^{n}), is unique up to equivalence. It is known ([10]) that perfect codes have the following parameters: length $n=2^{r}-1$ with $r>1,2^{n-r}$ codewords, and the minimum distance 3 .

Let \bar{C} be the extended perfect code of length $N=2^{r}$ obtained from a perfect code C of length $2^{r}-1, r \geq 2$, by parity checking; i.e., adding the coordinate entry equals the sum by modulo 2 of all other entries. In the sequel, we will consider only perfect and extended perfect codes containing all-zero vector. The rank of a code C is the dimension of the linear span of C in \mathbb{F}^{n}.

It is said that the code $C^{\prime}=(C \backslash M) \cup M^{\prime}$ is obtained by a switching of M to M^{\prime} in the binary code C if C^{\prime} has the same parameters as C, see [1]. The set M is called a component of C. The set M is called the $i l$-component of the code \bar{C} of length N obtained from C by extending by l th coordinate if $M^{\prime}=M \oplus e_{i} \oplus e_{l}$ for some $i \in\{1,2, \ldots, N\}$, where e_{i} and e_{l} are the vectors of weight 1 with 1 in the i th and l th coordinate entries respectively. The set R is called the $i j k l$-component of \bar{C} if R is the $t_{1} t_{2}$-component for every $t_{1}, t_{2} \in\{i, j, k, l\}$.
*E-mail: daryik@rambler.ru
E-mail: sol@math.nsc.ru

It is known [20] that every extended perfect code of length N and rank $r_{N}-1=N-\log N$ is a Vasil'ev code [3]. The code can be constructed by switchings of $i l$-components from an extended Hamming code by some function $\lambda: \mathcal{H}^{N / 2-1} \rightarrow\{0,1\}$. Denote the code by \bar{V}_{λ}^{N}. Up to equivalence the code \bar{V}_{λ}^{N} has the following representation:

$$
\begin{equation*}
\bar{V}_{\lambda}^{N}=\left\{(|x|+|y|+\lambda(y),|x|+\lambda(y), x+y, x) \mid x \in \mathbb{F}^{N / 2-1}, y \in \mathcal{H}^{N / 2-1}\right\} . \tag{1}
\end{equation*}
$$

Let V be some v-element set, a $t-(v, k, \lambda)$-design is a collection of blocks from v different elements such that every block contains k different elements and each t-element subset from V is appeared in exactly λ blocks. A 3-($v, 4,1$)-design is called a Steiner quadruple system of order v and denoted by $\operatorname{SQS}(v)$ (or briefly SQS if the order of the system does not matter). Given a block (i, j, k, l) from $\operatorname{SQS}(v)$, we match up the vector from \mathbb{F}^{n} with 1 only in the i th, j th, k th, and l th coordinate entries. Further, from the context it will always be clear if we consider blocks, supports, or vectors corresponding to them. It is known $[15]$ that $\operatorname{SQS}(v)$ exists if and only if $v \equiv 2,4(\bmod 6)$. The supports of the codewords of weight 4 in a code \bar{C} define $\operatorname{SQS}\left(2^{r}\right)[10]$. The system $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ corresponding to an extended Hamming code $\overline{\mathcal{H}}^{N}$ of length N is called the Hamming-Steiner quadruple system by analogy to the Hamming-Steiner triple systems in [7, 12]. They are called also Boolean [5, 6]. Two SQSs are equivalent if there exists a one-to-one correspondence of their ground sets mapping the blocks of one system into the blocks of the other.

The main problem in this field is the classification and enumeration of all nonequivalent SQSs (see the progress in [4,5]). The best lower [17] and upper [14] bounds on the number $N(v)$ of all nonequivalent $\operatorname{SQS}(v)$ s are as follows:

$$
2^{v^{3} / 24} \leq N(v) \leq 2^{v^{3} \log v(1+o(1)) / 24} .
$$

The rank of $\operatorname{SQS}(N), N=2^{r}$, is the dimension of a linear subspace in \mathbb{F}^{N} spanned over $\operatorname{SQS}(N)$. It is known that the rank of $\operatorname{SQS}(N)$ can vary from $r_{N}-2$, which is the rank of the Hamming code of length $N-1$ [13], till the full rank $N-1$.

The notion of switching for SQS is defined similarly to that for the extended perfect binary code. Two sets R and R^{\prime} consisted of 4 -element subsets of V are called equilibrium if every unordered triple of elements, which can be found in the quadruples of one set, appears also in the quadruples of the other. It is said that

$$
\operatorname{SQS}^{\prime}(N)=(\operatorname{SQS}(N) \backslash R) \cup R^{\prime}
$$

is obtained by a switching from the set of blocks R to the set of blocks R^{\prime} in $\operatorname{SQS}(N)$ if R and R^{\prime} are equilibrium sets (see the definition of an equilibrium set in [11] and the description of switching methods in [6]). In [6], the set R as far as the set R^{\prime} is called component.

In [21], the number $R_{1}(N)$ is obtained of different $\operatorname{SQS}(N)$ s of rank $r_{N}-1$ which is more by 1 than the minimal possible rank:

$$
\begin{equation*}
R_{1}(N)=\left(2^{\mid S Q S}(N / 2) \mid-N / 2-1 / N\right) \cdot N!/|\operatorname{Sym}(\overline{\mathcal{H}}, N / 2)| . \tag{2}
\end{equation*}
$$

A parallel class in $3-(N, 4,1)$-design, where $N \equiv 0(\bmod 4)$, is defined as the set of the $N / 4$ pairwise disjoint blocks. $\operatorname{SQS}(N)$ is called resolvable if the set of its blocks can be partition into

$$
r=(N-1)(N-2) / 6
$$

nonintersecting parallel classes. In [5], the constructions of different $\operatorname{SQS}(N)$ s of rank at most r_{N} are presented. It is proved that all these systems are resolvable and the number of all different resolvable SQSs having some fixed parallel class is found:

$$
\frac{2^{N+2} \cdot(N / 4)!\cdot 6^{N(N-4) / 2^{5}} \cdot 55296^{N(N-4)(N-8) /\left(3 \cdot 2^{9}\right)}}{N(N-4)(N-8) \ldots(N-N / 2)} .
$$

Since there exist $N!/ 24^{N / 4}$ different parallel classes; therefore, using [5], we obtain that the number of all different $\operatorname{SQS}(N)$ s of rank at most r_{N} is

$$
\frac{2^{N+2} \cdot N!\cdot(N / 4)!\cdot 6^{N(N-4) / 2^{5}} \cdot 55296^{N(N-4)(N-8) /\left(3 \cdot 2^{9}\right)}}{24^{N / 4} \cdot N(N-4)(N-8) \cdots(N-N / 2)}
$$

It is proved in [19] that only 15590 of 1054163 Steiner quadruple systems $\operatorname{SQS}(16)$ are embedded into the perfect codes. It is shown in [22] that all Steiner triple systems of order $n=N-1=2^{r}-1>7$ and rank r_{N} are embedded into some perfect codes, but the ranks of these codes are still unknown.

In [7], the construction of SQS embedded into the extended perfect binary codes built from an extended Hamming code by the method of $i j k l$-components is obtained. There is given the lower bound on the number of different such systems. It is known [1] that the codes (and also the corresponding SQSs) obtained by this method have the rank at most 2 more than the rank of the Hamming code. But it was unknown if there exist other SQSs embedded into the extended perfect binary codes.

This paper is a development of $[7,8]$. The main results are the following: a classification of $\operatorname{SQS}(N)$ s, $N=2^{r}>8$, of rank r_{N} embedded into the extended perfect binary codes of length N and the same rank; the proof that the class of $\operatorname{SQS}(N) \mathrm{s}, N=2^{r}>8$, of rank r_{N} obtained in [7] coincides with the class of SQSs embedded into the extended perfect binary codes of length N and the same rank. It is unclear if all SQSs with the rank that exceeds the rank of the Hamming SQS by at most 2 are embedded in some extended perfect binary codes of bigger ranks. In [4], the classification of SQSs of rank $r_{N}-1$ using the concatenation approach is given; and it is shown that all these SQSs are embeddable into the extended Vasil'ev codes of the same rank. In the presented paper, we give another proof of this fact by the switching method. Moreover, we describe all $\operatorname{SQS}(N) \mathrm{s}$ of rank r_{N} that are not embeddable into the extended perfect codes of length N obtained by the method of $i j k l$-component from an extended Hamming code; and the lower bound is given on the number of these SQSs.

1. THE NUMBER OF DIFFERENT SQS(N) S OF RANKS $r_{N}-1$ AND r_{N} EMBEDDED INTO THE EXTENDED PERFECT CODES OF THE SAME RANKS

The order of the group of symmetries of an extended Hamming code $\overline{\mathcal{H}}^{N}$ satisfies

$$
\begin{equation*}
|\operatorname{Sym}(\overline{\mathcal{H}}, N)|=(N-1)(N-2)\left(N-2^{2}\right)\left(N-2^{3}\right) \ldots N / 2, \tag{3}
\end{equation*}
$$

see [10, Chapt. 13]. It is known that the rank of every extended perfect code \bar{V}_{λ}^{N} of length N which is obtained from a code $\overline{\mathcal{H}}^{N}$ by switchings of $i l$-components using some function λ is at most $r_{N}-1$. Therefore, the same is true for the rank of $\operatorname{SQS}(N)$ corresponding to this extended perfect code, obtained by switchings of $i l$-components from a Hamming $\operatorname{SQS}(N)$. By this, applying the well-known Lindner's construction [18] for an SQS embedded into the extended perfect Vasil'ev codes, and also comparing with the number of different $\operatorname{SQS}(N) \mathrm{s}$ of rank at most $r_{N}-1$ (obtained in [21]), we prove by the switching method that the class of $\operatorname{SQS}(N)$ s having rank $r_{N}-1$ coincides with the class of SQSs embedded into the codes \bar{V}_{λ}^{N} of the same rank. Another proof of this fact—using the concatenation construction-see in [4].

Theorem 1. Each $\operatorname{SQS}(N)$ of rank $r_{N}-1$ is embeddable into some extended perfect Vasil'ev code of length N and the same rank.

Proof. Let A be the incident matrix of a Hamming $\operatorname{SQS}(N)$ with $N=2^{r}$. The rows of the matrix are the binary vectors of weight 4 with 1 s in the coordinates corresponding to the blocks of this Hamming SQS. Then (see [21]) the matrix G consisting of the rows of the matrix A and the vector $(1,1,0, \ldots, 0)$ is the generating matrix of the code C which contains $2^{|S Q S(N / 2)|}$ different $\operatorname{SQS}(N)$ s of rank at most $r_{N}-1$. The number of different such codes is equal to

$$
\frac{N!}{2^{N / 2} \cdot|\operatorname{Sym}(\overline{\mathcal{H}}, N / 2)|} .
$$

Let us prove that every SQS of the code C is embedded into some extended Vasil'ev code \bar{V}_{λ}^{N} of length N and the same rank. Since every perfect code of length N and rank at most $r_{N}-1$ is an extended Vasil'ev code [20], constructed from the Hamming code of length $N / 2-1$ with some nonlinear function λ; therefore, we have the embeddability of each SQS from C into some extended perfect code.

Up to equivalence an extended Hamming code $\overline{\mathcal{H}}^{N}$ can be represented as

$$
\begin{equation*}
\overline{\mathcal{H}}^{N}=\left\{(|x|+|y|,|x|, x+y, x) \mid x \in \mathbb{F}^{N / 2-1}, y \in \mathcal{H}^{N / 2-1}\right\} . \tag{4}
\end{equation*}
$$

A codeword of weight 4 of the code C is either a row of the matrix A, or is obtained by adding $(1,1,0, \ldots, 0)$ to the codeword of weight 4 from $\overline{\mathcal{H}}^{N}$ having nonzero first or second coordinates (i.e., of the type $(1,0, \ldots)$ or $(0,1, \ldots)$), or is obtained by adding $(1,1,0, \ldots, 0)$ to the codeword of weight 6 from $\overline{\mathcal{H}}^{N}$ with the first two nonzero coordinates (i.e., of the type $(1,1, \ldots)$).

Let A_{0}, A_{1}, A_{2}, and A_{3} denote the set of rows of the matrix A such that the first two elements are equal to 1 , the first element equals 1 and the second is 0 , the first element is equal to 0 and the second to 1 , the first two elements equal 0 respectively.

Let B_{1}, B_{2}, and B_{3} stand for the sets of weight 4 of the vectors

- with the first coordinate equal to 1 and the second equal to 0 that are obtained by adding the vector $(1,1,0, \ldots, 0)$ to the rows of A_{2},
- with the first coordinate equal to 0 and the second equal to 1 that are obtained by adding the vector $(1,1,0, \ldots, 0)$ to the rows of A_{1},
- with the first two coordinates equal to 0 obtained by adding $(1,1,0, \ldots, 0)$ to the codewords of weight 6 from $\overline{\mathcal{H}}^{N}$ of the type $(1,1, \ldots)$ with the first two nonzero coordinates.

Then, by [21], the different SQSs are obtained by switchings of some k^{\prime} rows of $A_{123}=A_{1} \cup A_{2} \cup A_{3}$ by some appropriate k^{\prime} rows of the matrix $B_{123}=B_{1} \cup B_{2} \cup B_{3}$. The sets of triples corresponding to the rows will be equilibrium sets. The sets of such rows we also call equilibrium. Moreover, A_{123} and B_{123} can be partition into the subsets consisting of 8 blocks so that, for every eight blocks from A_{123}, there exits a unique set of eight blocks from B_{123}; i.e.,

$$
k^{\prime}=8 t^{\prime}, \quad 1 \leq t^{\prime} \leq\left\lfloor\frac{(N+3)(N-2)(N-4)}{192}\right\rfloor .
$$

Define the function $\lambda: \mathcal{H}^{N / 2-1} \rightarrow\{0,1\}$ for the code \bar{V}_{λ}^{N} containing SQS obtained in result of the following switching: for the vectors of weight 3 and (or) 4 corresponding to the k^{\prime} replaceable rows of A_{123} and the k^{\prime} replacing rows of B_{123}, put $\lambda=1$; for the other vectors from $\mathcal{H}^{N / 2-1}$ put $\lambda=0$.

Let $y \in \mathcal{H}^{N / 2-1}$ be a vector with the support $\left\{a_{1}, a_{2}, a_{3}\right\}$, where $\lambda=1$. Then, in $\mathbb{F}^{N / 2-1}$, there exist the three vectors of weight 1 intersecting y in one coordinate entry. By the construction of \bar{V}_{λ}^{N}, every of these three vectors together with y defines the weight 4 vectors in \bar{V}_{λ}^{N} of the type

$$
\left(1, a_{2}, a_{3}, \frac{N}{2}+1+a_{1}\right), \quad\left(1, a_{1}, a_{3}, \frac{N}{2}+1+a_{2}\right), \quad\left(1, a_{1}, a_{2}, \frac{N}{2}+1+a_{3}\right)
$$

corresponding to the weight 4 vectors in H^{N} of the type

$$
\left(2, a_{2}, a_{3}, \frac{N}{2}+1+a_{1}\right), \quad\left(2, a_{1}, a_{3}, \frac{N}{2}+1+a_{2}\right), \quad\left(2, a_{1}, a_{2}, \frac{N}{2}+1+a_{3}\right)
$$

respectively.

We can find the three weight 2 vectors in $\mathbb{F}^{N / 2-1}$ intersecting y in two coordinate entries. By the construction of \bar{V}_{λ}^{N}, every of these vectors together with y generates the weight 4 vectors in \bar{V}_{λ}^{N} of the type

$$
\begin{gathered}
\left(2, a_{3}, \frac{N}{2}+1+a_{1}, \frac{N}{2}+1+a_{2}\right), \quad\left(2, a_{2}, \frac{N}{2}+1+a_{1}, \frac{N}{2}+1+a_{3}\right), \\
\left(2, a_{1}, \frac{N}{2}+1+a_{2}, \frac{N}{2}+1+a_{3}\right),
\end{gathered}
$$

that correspond to weight 4 vectors in H^{N} of the type

$$
\begin{gathered}
\left(1, a_{3}, \frac{N}{2}+1+a_{1}, \frac{N}{2}+1+a_{2}\right), \quad\left(1, a_{2}, \frac{N}{2}+1+a_{1}, \frac{N}{2}+1+a_{3}\right), \\
\left(1, a_{1}, \frac{N}{2}+1+a_{2}, \frac{N}{2}+1+a_{3}\right)
\end{gathered}
$$

respectively.
Moreover, using the vector $0^{N / 2-1}$ and the weight 3 vector from $\mathbb{F}^{N / 2-1}$ with the support $\left\{a_{1}, a_{2}, a_{3}\right\}$, we additionally obtain the vectors from \bar{V}_{λ}^{N} of the types

$$
\left(2, a_{1}, a_{2}, a_{3}\right), \quad\left(1, \frac{N}{2}+1+a_{1}, \frac{N}{2}+1+a_{2}, \frac{N}{2}+1+a_{3}\right)
$$

corresponding to the weight 4 vectors in H^{N} of the types

$$
\left(1, a_{1}, a_{2}, a_{3}\right), \quad\left(2, \frac{N}{2}+1+a_{1}, \frac{N}{2}+1+a_{2}, \frac{N}{2}+1+a_{3}\right)
$$

respectively.
In result, we have the two equilibrium sets in \bar{V}_{λ}^{N} and $\overline{\mathcal{H}}^{N}$, each one containing eight quadruples.
Let $y=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ be the vector with the support $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ such that $\lambda(y)=1$. In $\mathbb{F}^{N / 2-1}$, there exist the four weight 1 vectors intersecting y in one coordinate entry. By the construction of \bar{V}_{λ}^{N}, these vectors together with y define the weight 4 vectors in \bar{V}_{λ}^{N} of the type

$$
\begin{array}{ll}
\left(b_{2}, b_{3}, b_{4}, \frac{N}{2}+1+b_{1}\right), & \left(b_{1}, b_{3}, b_{4}, \frac{N}{2}+1+b_{2}\right), \\
\left(b_{1}, b_{2}, b_{4}, \frac{N}{2}+1+b_{3}\right), & \left(b_{1}, b_{2}, b_{3}, \frac{N}{2}+1+b_{4}\right)
\end{array}
$$

The four weight 3 vectors exist in $\mathbb{F}^{N / 2-1}$ which intersect y in three coordinate entries. By the construction of \bar{V}_{λ}^{N}, each of them together with y generates the weight 4 vectors in \bar{V}_{λ}^{N} of the type

$$
\begin{array}{ll}
\left(b_{4}, \frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{2}, \frac{N}{2}+1+b_{3}\right), & \left(b_{3}, \frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{2}, \frac{N}{2}+1+b_{4}\right), \\
\left(b_{2}, \frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{3}, \frac{N}{2}+1+b_{4}\right), & \left(b_{1}, \frac{N}{2}+1+b_{2}, \frac{N}{2}+1+b_{3}, \frac{N}{2}+1+b_{4}\right)
\end{array}
$$

There exist the six weight 2 vectors in $\mathbb{F}^{N / 2-1}$ intersecting y in some two coordinates so that, by the construction (4), together with y they define in $\overline{\mathcal{H}}^{N}$ the following weight 4 vectors of the type

$$
\begin{array}{ll}
\left(b_{3}, b_{4}, \frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{2}\right), & \left(b_{2}, b_{4}, \frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{3}\right), \\
\left(b_{2}, b_{3}, \frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{4}\right), & \left(b_{1}, b_{4}, \frac{N}{2}+1+b_{2}, \frac{N}{2}+1+b_{3}\right), \\
\left(b_{1}, b_{3}, \frac{N}{2}+1+b_{2}, \frac{N}{2}+1+b_{4}\right), & \left(b_{1}, b_{2}, \frac{N}{2}+1+b_{3}, \frac{N}{2}+1+b_{4}\right)
\end{array}
$$

Moreover, we have in $\mathbb{F}^{N / 2-1}$ the unique all-zero vector and a unique weight 4 vector with the support $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ such that, by the construction (4), together with y they define the weight 4 vectors in $\overline{\mathcal{H}}^{N}$ of the type

$$
\left(b_{1}, b_{2}, b_{3}, b_{4}\right), \quad\left(\frac{N}{2}+1+b_{1}, \frac{N}{2}+1+b_{2}, \frac{N}{2}+1+b_{3}, \frac{N}{2}+1+b_{4}\right)
$$

respectively. Therefore, we can conclude that we obtain the two equilibrium sets and each contains eight vectors. These are the subsets from \bar{V}_{λ}^{N} and $\overline{\mathcal{H}}^{N}$ respectively. Note that the sets of quadruples from the first and second cases under consideration do not intersect each other. Both equilibrium sets of eight quadruples correspond to the switchings described in [21].

Hence, the system SQS obtained by switchings of some k^{\prime} row of the matrix $A_{1} \cup A_{2} \cup A_{3}$ by equilibrium k^{\prime} rows of $B_{1} \cup B_{2} \cup B_{3}$ is embeddable into the code \bar{V}_{λ}^{N} by the above-defined function λ.

Since all extended codes of length N of the rank at most $r_{N}-1$ are the Vasil'ev codes of length N obtained from the Hamming code $\mathcal{H}^{N / 2-1}$ by construction (1), each $\operatorname{SQS}(N)$ of rank $r_{N}-1$ is embeddable into some extended perfect Vasil'ev code of length N and rank $r_{N}-1$. Moreover, there exist

$$
2^{|\operatorname{SQS}(N / 2)|-N / 2} \cdot N!/ \mid \operatorname{Sym}(\overline{\mathcal{H}}, N / 2)
$$

different such SQSs. Taking it into account that, by [21], the number of $\operatorname{SQS}(N)$ s having rank $r_{N}-2$ is equal to $N!/ N \cdot|\operatorname{Sym}(\overline{\mathcal{H}}, N / 2)|$, we obtain (2). This completes the proof of Theorem 1 .

Note that the described switchings correspond to the switchings under transition from $\operatorname{SQS}(N)$ obtained by the Hahani's construction [16] to $\operatorname{SQS}(N)$ obtained by the Aliev's construction [2]. It is known that the Lindner's construction is a generalization of the Hahani's construction [18].

Let $R(\overline{\mathcal{H}}, N)$ denote the number of different $\operatorname{SQS}(\overline{\mathcal{H}}, N) \mathrm{s}$ of order N. Taking into account (3), we have

$$
R(\overline{\mathcal{H}}, N)=\frac{N!}{|\operatorname{Sym}(\overline{\mathcal{H}}, N)|}
$$

By [1], the rank of an extended perfect code of length N obtained from an extended Hamming code of length N by switchings of $i j k l$-components is at most r_{N}. Therefore, the rank of $\operatorname{SQS}(N)$ obtained from a Hamming SQS(N) by switchings of $i j k l$-components is at most r_{N}. We have

Theorem 2 [9]. Each extended perfect binary code \bar{C} of length N and rank at most r_{N} can be obtained from some extended Hamming code by consecutive switchings of il-components using at most two coordinates (il- and jl-for some i, j, l).

In [7, Theorem 4], it is presented the construction of a Steiner quadruple system and the corresponding switchings of $i l$ - and $i j k l$-components which allow us to obtain from a Hamming $\operatorname{SQS}(N)$ some $\operatorname{SQS}(N)$ of a bigger rank. Denote the class of $\operatorname{SQS}(N)$ s of rank r obtained in such a way by $\operatorname{Sw}(\operatorname{SQS}(N), r)$.

Let

$$
\begin{gathered}
P(N)=\left(2296^{\frac{N(N-4)(N-8)}{3 \cdot 2^{9}}} \cdot\left(2^{\frac{N(N-4)}{32}}-1\right)-\frac{N^{2}+12 N+8}{4}\right) \cdot \frac{N(N-1)(N-2)}{8}, \\
S(N)=2^{\left|\operatorname{SQS}\left(\frac{N}{2}\right)\right|-\frac{N}{2}} \cdot \frac{N!}{|\operatorname{Sym}(\overline{\mathcal{H}}, N / 2)|} .
\end{gathered}
$$

The main result of this paper is
Theorem 3. The class $\operatorname{Sw}\left(\operatorname{SQS}(N), r_{N}\right)$ coincides with the class of $\operatorname{SQS}(N)$ s embeddable into the perfect codes of the same rank constructed from an extended Hamming code of length N by the method of ijkl-components. The number $R_{2}(N)$ of these different SQSs satisfies

$$
P(N) \cdot R(\overline{\mathcal{H}}, N / 4)-S(N) \leq R_{2}(N) \leq P(N) \cdot R(\overline{\mathcal{H}}, N)-S(N)
$$

Proof. By Theorem 4 in [7], the number of $\operatorname{SQS}(N)$ s built by the method of $i j k l$-components from a fixed $\operatorname{SQS}(N / 4)$ and the set $\{i, j, k, l\}$ is equal to

$$
2296^{\frac{N(N-4)(N-8)}{3 \cdot 2^{9}}} \cdot 3 \cdot\left(2^{\frac{N(N-4)}{2^{5}}}-1\right)
$$

Note that $\operatorname{SQS}(N)$ s obtained from different $\operatorname{SQS}(N / 4)$ s by means of different switchings are distinguished. Indeed, let $S_{1}(N)$ and $S_{2}(N)$ be two equal $\operatorname{SQS}(N)$ s obtained by method of switchings of $i j k l$-components from different SQSs, say $S_{1}(N / 4)$ and $S_{2}(N / 4)$ of order $N / 4$, by means of different switchings. Then there exist some different elements a, b, c, d, and e from the set M such that

$$
(a, b, c, d) \in S_{1}(N / 4), \quad(a, b, c, e) \in S_{2}(N / 4) .
$$

For the equality of $S_{1}(N)$ and $S_{2}(N)$ it is necessary that for the two collections of 64 quadruples corresponding to the matrices $T_{a b c d}$ and $T_{a b c e}$ (see [7]) be obtained one from the other by the switchings

$$
d \leftrightarrow e, \quad i_{d} \leftrightarrow i_{e}, \quad j_{d} \leftrightarrow j_{e}, \quad k_{d} \leftrightarrow k_{e} .
$$

But the method of $i j k l$-components admits the switchings of elements of the form d, i_{d}, j_{d}, k_{d} which belong to the same column of the initial table and does not admit the switchings between the elements of the form $d i_{d}, j_{d}, k_{d}$ and e, i_{e}, j_{e}, k_{e} which belong to different columns of the initial table. Therefore, it is impossible to obtain some equal $\operatorname{SQS}(N / 4)$ from different $\operatorname{SQS}(N / 4)$ s by means of different switchings.

As we choose an arbitrary quadruple (i, j, k, l) from $\operatorname{SQS}(N)$, we have

$$
\begin{equation*}
2296^{\frac{N(N-4)(N-8)}{3_{2} 2^{9}}} \cdot 3 \cdot\left(2^{\frac{N(N-4)}{2^{5}}}-1\right) \cdot|\operatorname{SQS}(N)| \cdot R(\overline{\mathcal{H}}, N / 4) \tag{5}
\end{equation*}
$$

systems of order N. Let us understand which of them can coincide.
Consider an arbitrary $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ that corresponds to a fixed table T_{M} (see [7]) and a $\operatorname{SQS}(\overline{\mathcal{H}}, N / 4)$. While different partitions of the system $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ into the components and further applying switchings of $i j k l$-components to it, the same $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ can appear. Let us carefully study these situations.

Fix some quadruple $(i, j, k, l) \in \operatorname{SQS}(\overline{\mathcal{H}}, N)$ and an arbitrary element from $\{i, j, k\}$, for example, i. In this case, we have a partition of the initial $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ into $i l$-components. It is easy to see that $\operatorname{SQS}(N)$ that is obtained from the initial $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ by switching $l \leftrightarrow i$ applied to all quadruples containing the elements l or i coincides with $\operatorname{SQS}\left(\overline{\mathcal{H}}^{\prime}, N\right)$ that corresponds to the Hamming code $\overline{\mathcal{H}}^{\prime}=(l i) \overline{\mathcal{H}}$ obtained from the code $\overline{\mathcal{H}}$ by applying the permutation $(l i)$. The same is true for switchings $j \leftrightarrow k, a \leftrightarrow i_{a}$, and $j_{a} \leftrightarrow k_{a}$ for each $a \in M \backslash l$, as well as for the partition of the initial $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ into $j l$ - and $k l$-components; i.e., for the switchings

$$
l \leftrightarrow j, \quad i \leftrightarrow k, \quad a \leftrightarrow j_{a}, \quad i_{a} \leftrightarrow k_{a}, \quad \text { and } \quad l \leftrightarrow k, \quad i \leftrightarrow j, \quad a \leftrightarrow k_{a}, \quad i_{a} \leftrightarrow j_{a}
$$

for each $a \in M \backslash l$. Hence, we have $3 \cdot 2 \cdot(1+(N / 4-1))=3 N / 2$ repetitions.
We can also partition the initial $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ into $i l$-components and first apply the switching $l \leftrightarrow i$ to all $i j k l$-components of this $\operatorname{SQS}(\overline{\mathcal{H}}, N)$, containing the elements l and i; after that we can choose the element j or k and apply one of the switchings $l \leftrightarrow j, i \leftrightarrow k, a \leftrightarrow j_{a}, i_{a} \leftrightarrow k_{a}$ for each $a \in M \backslash l$ or $l \leftrightarrow k, i \leftrightarrow j, a \leftrightarrow k_{a}, i_{a} \leftrightarrow j_{a}$ for each $a \in M \backslash l$ to all $l j$ - or $l k$-components, containing elements from the chosen switching. The so-obtained $\operatorname{SQS}(N)$ coincides with the $\operatorname{SQS}\left(H^{\prime}, N\right)$ corresponding to one of the Hamming codes

$$
(l i j) \overline{\mathcal{H}}, \quad(l k i) \overline{\mathcal{H}}, \quad(l i)\left(a j_{a}\right) \overline{\mathcal{H}}, \quad(l i)\left(i_{a} k_{a}\right) \overline{\mathcal{H}} \quad \text { or } \quad(l i k) \overline{\mathcal{H}},(l j i) \overline{\mathcal{H}}, \quad(l i)\left(a k_{a}\right) \overline{\mathcal{H}}, \quad(l i)\left(i_{a} j_{a}\right) \overline{\mathcal{H}},
$$

obtained from $\overline{\mathcal{H}}$ by means of the corresponding permutations. It is easy that these two codes coincide.
The same argumentations are also true if we would choose one of the switchings $j \leftrightarrow k, a \leftrightarrow i_{a}$, and $j_{a} \leftrightarrow k_{a}$ as the initial switching and if the initial $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ would be partitioned into $j l$ - or $k l$ components. Thus, we have $3 \cdot 4 \cdot 2 \cdot(1+1+N / 4-1+N / 4-1)=12 N$ repetitions.

Let us note that $\operatorname{SQS}(N)$ which is obtained from the initial $\operatorname{SQS}(\overline{\mathcal{H}}, N)$ while partitioning it into $i j k l$-components and further applying the switching $a \leftrightarrow i_{a}$ to all $i l$-components containing a and i_{a} coincides with $\operatorname{SQS}^{\prime}(N)$ which is obtained from the initial $\operatorname{SQS}(H, N)$ while partitioning it into $i i_{a} t_{1} t_{2}-$ components and further applying the switching $a \leftrightarrow i_{a}$ to all $i i_{a}$-components containing a and i_{a}. Since
there exist exactly $N / 2-1$ quadruples of the type $i i_{a} t_{1} t_{2}$, we obtain $N / 2-1$ repetitions. The same fact is true for the switching $j_{a} \leftrightarrow k_{a}$ and also for the switchings $a \leftrightarrow j_{a}$ and $i_{a} \leftrightarrow k_{a}$ applied to the $j l$ components, as well as for the switchings $a \leftrightarrow k_{a}$ and $i_{a} \leftrightarrow j_{a}$, applied to the $k l$-components. Hence, we obtain $6(N / 2-1)$ repetitions. These argumentations are true for every $a \in M \backslash l$; therefore, we have $(N / 4-1)(3 N-6)=3(N-2)(N-4) / 4$ repetitions.

Thereby, for the chosen partitioning into $i j k l$-components we obtain

$$
3 N / 2+12 N+3(N-2)(N-4) / 4=3\left(N^{2}+12 N+8\right) / 4
$$

repetitions. Since (i, j, k, l) is an arbitrary quadruple from $\operatorname{SQS}(\overline{\mathcal{H}}, N)$, where

$$
|\mathrm{SQS}(\overline{\mathcal{H}}, N)|=N(N-1)(N-2) / 24,
$$

we have the total of

$$
N(N-1)(N-2)\left(N^{2}+12 N+8\right) / 32
$$

repetitions. Taking into account the calculated in (5) number of $\operatorname{SQS}(N)$ s which includes the identical ones, we obtain the lower bound of the number of different $\operatorname{SQS}(N)$ s built from a fixed table Q and base $\operatorname{SQS}(m)$ by means of the above-mentioned construction:

$$
\left(2296^{\frac{N(N-4)(N-8)}{3 \cdot 2^{9}}} \cdot\left(2^{\frac{N(N-4)}{2^{5}}}-1\right)-\frac{N^{2}+12 N+8}{4}\right) \cdot \frac{N(N-1)(N-2)}{8} .
$$

Since there exist $R(\overline{\mathcal{H}}, N / 4)$ extended binary Hamming codes, we have at least

$$
\left(2296^{\frac{N(N-4)(N-8)}{3 \cdot 2^{9}}} \cdot\left(2^{\frac{N(N-4)}{2^{5}}}-1\right)-\frac{N^{2}+12 N+8}{4}\right) \cdot \frac{N(N-1)(N-2)}{8} \cdot R(H, N / 4)
$$

extended perfect codes of length N that are built from the extended Hamming code of length N by means of the switchings of $i j k l$-components. The switchings of $i j k l$-components can be applied to at most $R(\overline{\mathcal{H}}, N)$ extended Hamming codes of length N; therefore, we have at most

$$
\left(2296^{\frac{N(N-4)(N-8)}{3 \cdot 2^{9}}} \cdot\left(2^{\frac{N(N-4)}{2^{5}}}-1\right)-\frac{N^{2}+12 N+8}{4}\right) \cdot \frac{N(N-1)(N-2)}{8} \cdot R(\overline{\mathcal{H}}, N)
$$

extended perfect codes of length N which can be obtained from the extended Hamming code of length N by switchings of $i j k l$-components and to which all different $\operatorname{SQS}(N)$ s of rank at most r_{N} correspond.

By Theorem 2, we obtain that there is no other $\operatorname{SQS}(N)$ s of rank at most r_{N} embeddable into extended perfect binary codes of the same rank. Since, by Theorem 1, there exist exactly

$$
2^{|S Q S(N / 2)|-N / 2} \cdot N!/|\operatorname{Sym}(\overline{\mathcal{H}}, N / 2)|
$$

different $S Q S(N)$ s of rank at most $r_{N}-1$ embedded into extended perfect codes of length N and the same rank, we have the bound given in the statement of the theorem.

The proof of Theorem 3 is complete.

2. THE STEINER QUADRUPLE SYSTEMS NOT EMBEDDED
 INTO THE EXTENDED PERFECT CODES OBTAINED BY THE METHOD OF SWITCHING OF ijkl-COMPONENTS

Theorem 4. Let $R^{\prime}(N)$ be the number of different $\operatorname{SQS}(N)$ s of order $N \geq 128$ and rank r_{N} which are not embeddable into the extended perfect binary codes that are obtained by the method of switching of the ijkl-components from an extended binary Hamming code. Then

$$
R^{\prime}(N) \geq \frac{N(N-4)(N-8)}{3 \cdot 2^{9}} \cdot\left(\frac{N^{2}+16 N-512}{32}\right)^{N / 64-1} \cdot 18912^{\frac{N}{64}} \cdot R(\overline{\mathcal{H}}, N / 4) .
$$

Table 1.

$R_{i l}^{1 a b c l}$	$R_{i l}^{2 a b c l}$	$R_{i l}^{3 a b c l}$	$R_{i l}^{4 a b c l}$	$R_{i l}^{5 a b c l}$	$R_{i l}^{6 a b c l}$	$R_{i l}^{7 a b c l}$	$R_{i l}^{8 a b c l}$
$a b c l$	$a j_{b} j_{c} l$	$j_{a} b j_{c} l$	$j_{a} j_{b} c l$	$j a b j_{c}$	$j a j_{b} c$	$j j_{a} b c$	$j j_{a} j_{b} j_{c}$
$a i_{b} i_{c} l$	$a k_{b} k_{c} l$	$j_{a} i_{b} k_{c} l$	$j_{a} k_{b} i_{c} l$	$j a i_{b} k_{c}$	$j a k_{b} i_{c}$	$j j_{a} i_{b} i_{c}$	$j j_{a} k_{b} k_{c}$
$i_{a} b i_{c} l$	$i_{a} j_{b} k_{c} l$	$k_{a} b k_{c} l$	$k_{a} j_{b} i_{c} l$	$j i_{a} b k_{c}$	$j i_{a} j_{b} i_{c}$	$j k_{a} b i_{c}$	$j k_{a} j_{b} k_{c}$
$i_{a} i_{b} c l$	$a k_{b} j_{c} l$	$k_{a} i_{b} j_{c} l$	$k_{a} k_{b} c l$	$j i_{a} i_{b} j_{c}$	$j i_{a} k_{b} c$	$j k_{a} i_{b} c$	$j k_{a} k_{b} j_{c}$
$i a b i_{c}$	$i a j_{b} k_{c}$	$i j_{a} b k_{c}$	$i j_{a} j_{b} i_{c}$	$k a b k_{c}$	$k a j_{b} i_{c}$	$k j_{a} b i_{c}$	$k j_{a} j_{b} k_{c}$
$i a i_{b} c$	$i a k_{b} j_{c}$	$i j_{a} i_{b} j_{c}$	$i j_{a} k_{b} c$	$k a i_{b} j_{c}$	$k a k_{b} c$	$k j_{a} i_{b} c$	$k j_{a} k_{b} j_{c}$
$i i_{a} b c$	$i i_{a} j_{b} j_{c}$	$i k_{a} b j_{c}$	$i k_{a} j_{b} c$	$k i_{a} b j_{c}$	$k i_{a} j_{b} c$	$k k_{a} b c$	$k k_{a} j_{b} j_{c}$
$i i_{a} i_{b} i_{c}$	$i i_{a} k_{b} k_{c}$	$i k_{a} i_{b} j_{c}$	$i k_{a} k_{b} i_{c}$	$k i_{a} i_{b} k_{c}$	$k i_{a} k_{b} i_{c}$	$k k_{a} i_{b} i_{c}$	$k k_{a} k_{b} k_{c}$

Proof. Consider $\operatorname{SQS}(H, N)$ obtained by the method of [7, Theorem 1] and the components $R_{i j k l}^{a b c l}$ and $R_{i l}^{1}$ therein. Recall that $R_{i l}^{1}$ is the linear span of the vectors with the supports

$$
\left\{i j k l, i a i_{a} l, i j_{a} k_{a} l \mid a \in M \backslash l\right\} .
$$

The component $R_{i j k l}^{a b c l}$ and its partitioning into $i l$-components $R_{i l}^{1 a b c l}, \ldots, R_{i l}^{8 a b c l}$ are represented in Table 1.

Every component $R_{i l}^{1 a b c l}, \ldots, R_{i l}^{8 a b c l}$ can be partitioned into two subsets of equal total size so that to $R_{1 i l}^{1 a b c l}$ and $R_{2 i l}^{1 a b c l}, \ldots, R_{1 i l}^{8 a b c l}$ and $R_{2 i l}^{8 a b c l}$ there corresponds the same four-element subset $R_{1 i l}, \ldots, R_{8 i l}$ from $R_{i l}^{1}$ respectively; and moreover, for each of the sets

$$
R_{1 i l}^{1 a b c l} \cup R_{1 i l}, \quad R_{2 i l}^{1 a b c l} \cup R_{1 i l}, \quad \ldots, \quad R_{1 i l}^{8 a b c l} \cup R_{8 i l}, \quad R_{2 i l}^{8 a b c l} \cup R_{8 i l},
$$

the switchings of elements which transform these sets to the equilibrium are allowable.
For example, the component

$$
R_{i l}^{1 a b c l}=\left\{a b c l, a i_{b} i_{c} l, i_{a} b i_{c} l, i_{a} i_{b} c l, i a b i_{c}, i a i_{b} c, i i_{a} b c, i i_{a} i_{b} i_{c}\right\}
$$

can be represented as

$$
R_{i l}^{1 a b c l}=\left\{a b c l, a i_{b} i_{c} l, i i_{a} b c, i i_{a} i_{b} i_{c}\right\} \cup\left\{i_{a} b i_{c} l, i_{a} i_{b} c l, i a b i_{c}, i a i_{b} c\right\},
$$

i.e.,

$$
R_{1 i l}^{1 a b c l}=\left\{a b c l, a i_{b} i_{c} l, i i_{a} b c, i i_{a} i_{b} i_{c}\right\}, \quad R_{2 i l}^{1 a b c l}=\left\{i_{a} b i_{c} l, i_{a} i_{b} c l, i a b i_{c}, i a i_{b} c\right\} .
$$

Then the set corresponding to them looks as

$$
R_{1 i l}=\left\{i b i_{b} l, i c i_{c} l, a b i_{a} i_{b}, a c i_{a} i_{c}\right\}
$$

and each of the sets $R_{1 i l}^{1 a b c l} \cup R_{1 i l}$ and $R_{2 i l}^{1 a b c l} \cup R_{1 i l}$ allows the switchings

$$
b \leftrightarrow i_{c}, \quad l \leftrightarrow i_{a}, \quad a \leftrightarrow i_{a}, \quad c \leftrightarrow i_{b}
$$

and

$$
b \leftrightarrow c, \quad i_{b} \leftrightarrow i_{c}, \quad l \leftrightarrow a, \quad i \leftrightarrow i_{a}
$$

correspondingly. Each of the switchings

$$
b \leftrightarrow i_{c}, \quad l \leftrightarrow i_{a}, \quad a \leftrightarrow i_{a}, \quad c \leftrightarrow i_{b}
$$

transforms the initial set $R_{1 i l}^{1 a b c l} \cup R_{1 i l}$ into the same set equilibrium to it. Also, each of the switchings

$$
i_{b} \leftrightarrow i_{c}, \quad l \leftrightarrow a, \quad i \leftrightarrow i_{a}
$$

transforms the initial set $R_{2 i l}^{1 a b c l} \cup R_{1 i l}$ to the same equilibrium set.
There exist at least three such different partitions of each of the components $R_{i l}^{1 a b c l}, \ldots, R_{i l}^{8 a b c l}$.
Let us note that the above-listed cases do not exhaust all possibilities, which allows us to obtain only the lower bound on the number of $\operatorname{SQS}(N) \mathrm{s}$ of rank r_{N} such that they are not embeddable into the extended perfect binary codes of length N and the same rank.

In Tables $2-4$, all partitions of the components, the sets from $R_{i l}^{1}$ corresponded to them, and the possible switchings in each of the three cases are specified. Many of the sets $R_{r i l}^{s}, r \in\{1, \ldots, 8\}$ and $s \in\{1,2,3\}$, intersect between themselves for fixed s and different r as well as for different s and r. Therefore, it is impossible to apply switchings to all of the sets independently.

From the Tables 2, 3, and 4 we can see that the sets

$$
\begin{aligned}
& R_{1 i l}^{1}, R_{2 i l}^{1}, R_{7 i l}^{1}, R_{8 i l}^{1} \quad \text { and } \quad R_{3 i l}^{1}, R_{4 i l}^{1}, R_{5 i l}^{1}, R_{6 i l}^{1} ; \\
& R_{1 i l}^{2}, R_{3 i l}^{2}, R_{6 i l}^{2}, R_{8 i l}^{2} \quad \text { and } \quad R_{2 i l}^{2}, R_{4 i l}^{2}, R_{5 i l}^{2}, R_{7 i l}^{2} ; \\
& R_{1 i l}^{3}, R_{4 i l}^{3}, R_{5 i l}^{3}, R_{8 i l}^{3} \quad \text { and } \quad R_{2 i l}^{3}, R_{3 i l}^{3}, R_{6 i l}^{3}, R_{7 i l}^{3}
\end{aligned}
$$

correspondingly do not intersect between themselves. Thereby, we have 6 collections of pairwise disjoint sets.

Since to each of the four sets of the form $R_{r i l}^{s}$ from every collection there correspond two sets of the form $R_{1 i l}^{r a b c l} \cup R_{r i l}^{s}$ and $R_{2 i l}^{r a b c l} \cup R_{r i l}^{s}$, and we can apply (or do not apply) the allowable switching to any of them; therefore, each collection allows $3^{4}-1$ different switchings. Also, the next composite sets compounded from different Tables 2-4 do not intersect each other:

$$
\begin{array}{ll}
R_{1 i l}^{1}, R_{8 i l}^{1}, R_{2 i l}^{2}, R_{7 i l}^{2}, R_{4 i l}^{3}, R_{5 i l}^{3} ; & R_{1 i l}^{1}, R_{8 i l}^{1}, R_{3 i l}^{2}, R_{6 i l}^{2}, R_{2 i l}^{3}, R_{7 i l}^{3} ; \\
R_{2 i l}^{1}, R_{7 i l}^{1}, R_{1 i l}^{2}, R_{8 i l}^{2}, R_{3 i l}^{3}, R_{6 i l}^{3} ; & R_{2 i l}^{1}, R_{7 i l}^{1}, R_{4 i l}^{2}, R_{5 i l}^{2}, R_{1 i l}^{3}, R_{8 i l}^{3} ; \\
R_{3 i l}^{1}, R_{6 i l}^{1}, R_{1 i l}^{2}, R_{8 i l}^{2}, R_{4 i l}^{3}, R_{5 i l}^{3} ; & R_{3 i l}^{1}, R_{6 i l}^{1}, R_{4 i l}^{2}, R_{5 i l}^{2}, R_{2 i l}^{3}, R_{7 i l}^{3} ; \\
R_{4 i l}^{1}, R_{5 i l}^{1}, R_{2 i l}^{2}, R_{7 i l}^{2}, R_{3 i l}^{3}, R_{6 i l}^{3} ; & R_{4 i l}^{1}, R_{5 i l}^{1}, R_{3 i l}^{2}, R_{6 i l}^{2}, R_{1 i l}^{3}, R_{8 i l}^{3} .
\end{array}
$$

Hence we also have eight collections of pairwise disjoint sets. Since two sets of the form $R_{1 i l}^{r a b c l} \cup R_{r i l}^{s}$ and $R_{2 i l}^{r a b c l} \cup R_{r i l}^{s}$ correspond to each of the six sets of the form $R_{r i l}^{s}$ from every collection and we can apply (or do not apply) an allowable switching to each of them; therefore, each collection allows $3^{6}-1$ different switchings.

As far as the above-listed tables contain the partitions of the components and the switchings which transform them to the equilibrium sets, the resulting quadruple systems are SQSs. Hence, for the partition of $R_{i j k l}^{a b c l}$ into $i l$-components we obtain at least

$$
6 \cdot\left(3^{4}-1\right)+8 \cdot\left(3^{6}-1\right)=2 \cdot 3^{5}(1+12)-14=6304
$$

different switchings. For the partition of $R_{i j k l}^{a b c l}$ into $j l$ - and $k l$-components the situation is similar. Therefore, for each quadruple from $\operatorname{SQS}(N / 4)$, we have $3 \cdot 6304=18912$ different switchings. In order for switchings could be applied to the components of the form $R_{i j k l}^{\alpha_{t}}$ for different quadruples $\alpha_{t} \in \operatorname{SQS}(N / 4)$ independently, these quadruples should not have common elements. As for each quadruple α_{t} from $\operatorname{SQS}(N / 4)$ there exist $4(N-4)(N-8) / 3 \cdot 2^{5}$ quadruples which have the only common element with the initial quadruple, and there exist $3 N / 4-18$ quadruples which have two common elements with the initial quadruple, for α_{t} there are exactly

$$
z=(N-4)(N-8) / 3 \cdot 2^{3}+3 N / 4-18=\left(N^{2}+6 N-376\right) / 24
$$

quadruples having common elements with it and

$$
|\operatorname{SQS}(N / 4)|-1-z=\frac{(N-4)(N-8)(N-64)}{3} \cdot 2^{9}-\frac{3 N}{4}+17
$$

Table 2.

$R_{1 i l}^{\text {rabcl }}$	$R_{2 i l}^{\text {rabcl }}$	$R_{\text {ril }}^{1}$	switchings $R_{1 i l}^{r a b c l} \cup R_{r i l}^{1}$	switchings $R_{2 i l}^{\text {rabcl }} \cup R_{\text {ril }}^{1}$
$l a b c$	$l i_{a} b i_{c}$	$l i b i_{b}$	$b \leftrightarrow i_{c}$	$b \leftrightarrow c$
$l a i_{b} i_{c}$	$l i_{a} i_{b} c$	licic $_{\text {c }}$	$l \leftrightarrow i_{a}$	$i_{b} \leftrightarrow i_{c}$
$i i_{a} b c$	$i a i_{b} c$	$a b i_{a} i_{b}$	$a \leftrightarrow i$	$l \leftrightarrow a$
$i i_{a} i_{b} i_{c}$	$i a b i_{c}$	$a c i_{a} i_{c}$	$c \leftrightarrow i_{b}$	$i \leftrightarrow i_{a}$
$j j_{a} b c$	$j k_{a} b i_{c}$	$j k b i_{b}$	$b \leftrightarrow i_{c}$	$b \leftrightarrow c$
$j j_{a} i_{b} i_{c}$	$j k_{a} i_{b} c$	$j k c i_{c}$	$c \leftrightarrow i_{b}$	$i_{b} \leftrightarrow i_{c}$
$k k_{a} b c$	$k j_{a} b i_{c}$	$j_{a} k_{a} b i_{b}$	$j \leftrightarrow k_{a}$	$j \leftrightarrow j_{a}$
$k k_{a} i_{b} i_{c}$	$k j_{a} i_{b} c$	$j_{a} k_{a} c i_{c}$	$k \leftrightarrow j_{a}$	$k \leftrightarrow k_{a}$
$j a j_{b} c$	$j i_{a} j_{b} i_{c}$	$j k j_{b} k_{b}$	$j_{b} \leftrightarrow i_{c}$	$j_{b} \leftrightarrow c$
$j a k_{b} i_{c}$	$j i_{a} k_{b} c$	$j k c i_{c}$	$k_{b} \leftrightarrow c$	$k_{b} \leftrightarrow i_{c}$
$k i_{a j} j_{b} c$	$k a j_{b} i_{c}$	$a i_{a} j_{b} k_{b}$	$j \leftrightarrow i_{a}$	$j \leftrightarrow a$
$k i_{a} k_{b} i_{c}$	$k a k_{b} c$	$a i_{a} c i_{c}$	$k \leftrightarrow a$	$k \leftrightarrow i_{a}$
$j a b j_{c}$	$j i_{a} b k_{c}$	$j k b i_{b}$	$b \leftrightarrow k_{c}$	$b \leftrightarrow j_{c}$
$j a i_{b} k_{c}$	$j i_{a} i_{b} j_{c}$	$j k j_{c} k_{c}$	$i_{b} \leftrightarrow j_{c}$	$i_{b} \leftrightarrow k_{c}$
$k i_{a} b j_{c}$	$k^{*} a k_{c}$	$a i_{a} b i_{b}$	$j \leftrightarrow i_{a}$	$j \leftrightarrow a$
$k i_{a} i_{b} k_{c}$	$k a i_{b} j_{c}$	$a i_{a} j_{c} k_{c}$	$k \leftrightarrow a$	$k \leftrightarrow i_{a}$
$l j_{a} j_{b} c$	$l k_{a} j_{b} i_{c}$	$l i j_{b} k_{b}$	$j_{b} \leftrightarrow i_{c}$	$j_{b} \leftrightarrow c$
$l j_{a} k_{b} i_{c}$	$l k_{a} k_{b} c$	licic $^{\text {c }}$	$k_{b} \leftrightarrow c$	$k_{b} \leftrightarrow i_{c}$
$i k_{a} j_{b} c$	$i j_{a} j_{b} i_{c}$	$j_{a} k_{a} j_{b} k_{b}$	$l \leftrightarrow k_{a}$	$l \leftrightarrow j_{a}$
$i k_{a} k_{b} i_{c}$	$i j_{a} k_{b} c$	$j_{a} k_{a} c i_{c}$	$i \leftrightarrow j_{a}$	$i \leftrightarrow k_{a}$
$l j_{a} b j_{c}$	$l k_{a} b k_{c}$	$l i b i_{b}$	$b \leftrightarrow k_{c}$	$b \leftrightarrow j_{c}$
$l j_{a} i_{b} k_{c}$	$l k_{a} i_{b} j_{c}$	$l i j_{c} k_{c}$	$i_{b} \leftrightarrow j_{c}$	$i_{b} \leftrightarrow k_{c}$
$i k_{a} b j_{c}$	$i j_{a} b k_{c}$	$j_{a} k_{a} b i_{b}$	$l \leftrightarrow k_{a}$	$l \leftrightarrow j_{a}$
$i k_{a} i_{b} k_{c}$	$i j_{a} i_{b} j_{c}$	$j_{a} k_{a} j_{c} k_{c}$	$i \leftrightarrow j_{a}$	$i \leftrightarrow k_{a}$
$l a j_{b} j_{c}$	$l i_{a} j_{b} k_{c}$	$l i j_{b} k_{b}$	$j_{b} \leftrightarrow k_{c}$	$j_{b} \leftrightarrow j_{c}$
$l a k_{b} k_{c}$	$l i_{a} k_{b} j_{c}$	$l i j_{c} k_{c}$	$k_{b} \leftrightarrow j_{c}$	$k_{b} \leftrightarrow k_{c}$
$i i_{a} j_{b} j_{c}$	$i a j_{b} k_{c}$	$a i_{a} j_{b} k_{b}$	$l \leftrightarrow i_{a}$	$l \leftrightarrow a$
$i i_{a} k_{b} k_{c}$	$i a k_{b} j_{c}$	$a i_{a} j_{c} k_{c}$	$i \leftrightarrow a$	$i \leftrightarrow i_{a}$
$j j_{a} j_{b} j_{c}$	$j k_{a} j_{b} k_{c}$	$j k j_{b} k_{b}$	$j_{b} \leftrightarrow k_{c}$	$j_{b} \leftrightarrow j_{c}$
$j j_{a} k_{b} k_{c}$	$j k_{a} k_{b} j_{c}$	$j k j_{c} k_{c}$	$k_{b} \leftrightarrow j_{c}$	$k_{b} \leftrightarrow k_{c}$
$k k_{a} j_{b} j_{c}$	$k j_{a} j_{b} k_{c}$	$j_{a} k_{a} j_{b} k_{b}$	$j \leftrightarrow k_{a}$	$j \leftrightarrow j_{a}$
$k k_{a} k_{b} k_{c}$	$k j_{a} k_{b} j_{c}$	$j_{a} k_{a} j_{c} k_{c}$	$k \leftrightarrow j_{a}$	$k \leftrightarrow k_{a}$

Table 3.

$R_{1 i l}^{\text {rabcl }}$	$R_{2 i l}^{\text {rabcl }}$	$R_{r i l}^{2}$	switchings $R_{1 i l}^{\text {rabcl }} \cup R_{r i l}^{2}$	switchings $R_{2 i l}^{\text {rabcl }} \cup R_{\text {ril }}^{2}$
$l a b c$	$l a i_{b} i_{c}$	$l i a i a_{a}$	$a \leftrightarrow i_{c}$	$a \leftrightarrow c$
$l i_{a} b i_{c}$	$l i_{a} i_{b} c$	lici $_{c}$	$i_{a} \leftrightarrow c$	$i_{a} \leftrightarrow i_{c}$
$i a i_{b} c$	$i a b i_{c}$	$a b i_{a} i_{b}$	$l \leftrightarrow i_{b}$	$l \leftrightarrow b$
$i i_{a} i_{b} i_{c}$	$i i_{a} b c$	$b c i_{b} i_{c}$	$i \leftrightarrow b$	$i \leftrightarrow i_{b}$
$j j_{a} b c$	$j j_{a} i_{b} i_{c}$	$j k j_{a} k_{a}$	$j_{a} \leftrightarrow i_{c}$	$j_{a} \leftrightarrow c$
$j k_{a} b i_{c}$	$j k_{a} i_{b} c$	$j k c i_{c}$	$k_{a} \leftrightarrow c$	$k_{a} \leftrightarrow i_{c}$
$k j_{a} i_{b} c$	$k j_{a} b i_{c}$	$j_{a} k_{a} b i_{b}$	$j \leftrightarrow i_{b}$	$j \leftrightarrow b$
$k k_{a} i_{b} i_{c}$	$k k_{a} b c$	$b c i_{b} i_{c}$	$k \leftrightarrow b$	$k \leftrightarrow i_{b}$
$j a j_{b} c$	$j a k_{b} i_{c}$	$j k a i_{a}$	$a \leftrightarrow i_{c}$	$a \leftrightarrow c$
$j i_{a} j_{b} i_{c}$	$j i_{a} k_{b} c$	$j k c i_{c}$	$i_{a} \leftrightarrow c$	$i_{a} \leftrightarrow i_{c}$
$k a k_{b} c$	$k a j_{b} i_{c}$	$j_{b} k_{b} a i_{a}$	$j \leftrightarrow k_{b}$	$j \leftrightarrow j_{b}$
$k i_{a} k_{b} i_{c}$	$k i_{a} j_{b} c$	$j_{b} k_{b} c i_{c}$	$k \leftrightarrow j_{b}$	$k \leftrightarrow k_{b}$
$j a b j_{c}$	$j a i_{b} k_{c}$	$j k a i_{a}$	$a \leftrightarrow k_{c}$	$a \leftrightarrow j_{c}$
$j i_{a} b k_{c}$	$j i_{a} i_{b} j_{c}$	$j k j_{c} k_{c}$	$i_{a} \leftrightarrow j_{c}$	$i_{a} \leftrightarrow k_{c}$
$k a i_{b} j_{c}$	$k a b k_{c}$	$a i_{a} b i_{b}$	$j \leftrightarrow i_{b}$	$j \leftrightarrow b$
$k i_{a} i_{b} k_{c}$	$k i_{a} b j_{c}$	$b i_{b} j_{c} k_{c}$	$k \leftrightarrow b$	$k \leftrightarrow i_{b}$
$l j_{a} j_{b} c$	$l j_{a} k_{b} i_{c}$		$j_{a} \leftrightarrow i_{c}$	$j_{a} \leftrightarrow c$
$l k_{a} j_{b} i_{c}$	$l k_{a} k_{b} c$	lici $_{c}$	$k_{a} \leftrightarrow c$	$k_{a} \leftrightarrow i_{c}$
$i j_{a} k_{b} c$	$i j_{a} j_{b} i_{c}$	$j_{a} k_{a} j_{b} k_{b}$	$l \leftrightarrow k_{b}$	$l \leftrightarrow j_{b}$
$i k_{a} k_{b} i_{c}$	$i k_{a} j_{b} c$	$j_{b} k_{b} c i_{c}$	$i \leftrightarrow j_{b}$	$i \leftrightarrow k_{b}$
$l j_{a} b j_{c}$	$l j_{a} i_{b} k_{c}$		$j_{a} \leftrightarrow k_{c}$	$j_{a} \leftrightarrow j_{c}$
$l k_{a} b k_{c}$	$l k_{a} i_{b} j_{c}$	$l i j_{c} k_{c}$	$k_{a} \leftrightarrow j_{c}$	$k_{a} \leftrightarrow k_{c}$
$i j_{a} i_{b} j_{c}$	$i j_{a} b k_{c}$	$j_{a} k_{a} b i_{b}$	$l \leftrightarrow i_{b}$	$l \leftrightarrow b$
$i k_{a} i_{b} k_{c}$	$i k_{a} b j_{c}$	$b i_{b} j_{c} k_{c}$	$i \leftrightarrow b$	$i \leftrightarrow i_{b}$
$l a j_{b} j_{c}$	$l a k_{b} k_{c}$	$l i a i a ~$	$a \leftrightarrow k_{c}$	$a \leftrightarrow j_{c}$
$l i_{a} j_{b} k_{c}$	$l i_{a} k_{b} j_{c}$	$l i j_{c} k_{c}$	$i_{a} \leftrightarrow j_{c}$	$i_{a} \leftrightarrow k_{c}$
$i a k_{b} j_{c}$	$i a j_{b} k_{c}$	$a i_{a} j_{b} k_{b}$	$l \leftrightarrow k_{b}$	$l \leftrightarrow j_{b}$
$i i_{a} k_{b} k_{c}$	$i i_{a} j_{b} j_{c}$	$j_{b} k_{b} j_{c} k_{c}$	$i \leftrightarrow j_{b}$	$i \leftrightarrow k_{b}$
$j j_{a} j_{b} j_{c}$	$j j_{a} k_{b} k_{c}$	$j k j_{a} k_{a}$	$j_{a} \leftrightarrow k_{c}$	$j_{a} \leftrightarrow j_{c}$
$j k_{a} j_{b} k_{c}$	$j k_{a} k_{b} j_{c}$	$j k j_{c} k_{c}$	$k_{a} \leftrightarrow j_{c}$	$k_{a} \leftrightarrow k_{c}$
$k j_{a} k_{b} j_{c}$	$k j_{a} j_{b} k_{c}$	$j_{a} k_{a} j_{b} k_{b}$	$j \leftrightarrow k_{b}$	$j \leftrightarrow j_{b}$
$k k_{a} k_{b} k_{c}$	$k k_{a} j_{b} j_{c}$	$j_{b} k_{b} j_{c} k_{c}$	$k \leftrightarrow j_{b}$	$k \leftrightarrow k_{b}$

Table 4.

$R_{1 i l}^{r a b c l}$	$R_{2 i l}^{\text {rabcl }}$	$R_{r i l}^{3}$	switchings $R_{1 i l}^{r a b c l} \cup R_{r i l}^{3}$	switchings $R_{2 i l}^{\text {rabcl }} \cup R_{\text {ril }}^{3}$
$l a b c$	$l a i_{b} i_{c}$	$l i a i_{a}$	$a \leftrightarrow i_{b}$	$a \leftrightarrow b$
$l i_{a} i_{b} c$	$l i_{a} b i_{c}$	$l i b i_{b}$	$i_{a} \leftrightarrow b$	$i_{a} \leftrightarrow i_{b}$
$i a b i_{c}$	$\underset{i a i_{b} c}{ }$	$a c i_{a} i_{c}$	$l \leftrightarrow i_{c}$	$l \leftrightarrow c$
$i_{a} i_{b} i_{c}$	$i i_{a} b c$	$b c i_{b} i_{c}$	$i \leftrightarrow c$	$i \leftrightarrow i_{c}$
$j j_{a} b c$	$j j_{a} i_{b} i_{c}$	$j k j_{a} k_{a}$	$j_{a} \leftrightarrow i_{b}$	$j_{a} \leftrightarrow b$
$j k_{a} i_{b} c$	$j k_{a} b i_{c}$	$j k b i_{b}$	$k_{a} \leftrightarrow b$	$k_{a} \leftrightarrow i_{b}$
$k j_{a} b i_{c}$	$k j_{a} i_{b} c$	$j_{a} k_{a} c i_{c}$	$j \leftrightarrow i_{c}$	$j \leftrightarrow c$
$k k_{a} i_{b} i_{c}$	$k k_{a} b c$	$b i_{b} c i_{c}$	$k \leftrightarrow c$	$k \leftrightarrow i_{c}$
$j a j_{b} c$	$j a k_{b} i_{c}$	$j k a i_{a}$	$a \leftrightarrow k_{b}$	$a \leftrightarrow j_{b}$
$j i_{a} k_{b} c$	$j i_{a} j_{b} i_{c}$	$j k j_{b} k_{b}$	$i_{a} \leftrightarrow j_{b}$	$i_{a} \leftrightarrow k_{b}$
$k a j_{b} i_{c}$	$k a k_{b} c$	$a i_{a} c i_{c}$	$j \leftrightarrow i_{c}$	$j \leftrightarrow c$
$k i_{a} k_{b} i_{c}$	$k i_{a} j_{b} c$	$j_{b} k_{b} c i_{c}$	$k \leftrightarrow c$	$k \leftrightarrow i_{c}$
$j a b j_{c}$	$j a i_{b} k_{c}$	$j k a i_{a}$	$a \leftrightarrow i_{b}$	$a \leftrightarrow b$
$j i_{a} i_{b} j_{c}$	$j i_{a} b k_{c}$	$j k b i_{b}$	$i_{a} \leftrightarrow b$	$i_{a} \leftrightarrow i_{b}$
$k a b k_{c}$	$k a i_{b} j_{c}$	$a i_{a} j_{c} k_{c}$	$j \leftrightarrow k_{c}$	$j \leftrightarrow j_{c}$
$k i_{a} i_{b} k_{c}$	$k i_{a} b j_{c}$	$b i_{b} j_{c} k_{c}$	$k \leftrightarrow j_{c}$	$k \leftrightarrow k_{c}$
$l j_{a} j_{b} c$	$l j_{a} k_{b} i_{c}$	$l i j_{a} k_{a}$	$j_{a} \leftrightarrow k_{b}$	$j_{a} \leftrightarrow j_{b}$
$l k_{a} k_{b} c$	$l k_{a} j_{b} i_{c}$	$l i j_{b} k_{b}$	$k_{a} \leftrightarrow j_{b}$	$k_{a} \leftrightarrow k_{b}$
$i j_{a} j_{b} i_{c}$	$i j_{a} k_{b} c$	$j_{a} k_{a} c i_{c}$	$l \leftrightarrow i_{c}$	$l \leftrightarrow c$
$i k_{a} k_{b} i_{c}$	$i k_{a} j_{b} c$	$j_{b} k_{b} c i_{c}$	$i \leftrightarrow c$	$i \leftrightarrow i_{c}$
$l j_{a} b j_{c}$	$l j_{a} i_{b} k_{c}$	$l i j_{a} k_{a}$	$j_{a} \leftrightarrow i_{b}$	$j_{a} \leftrightarrow b$
$l k_{a} i_{b} j_{c}$	$l k_{a} b k_{c}$	$l i b i_{b}$	$k_{a} \leftrightarrow b$	$k_{a} \leftrightarrow i_{b}$
$i j_{a} b k_{c}$	$i j_{a} i_{b} j_{c}$	$j_{a} k_{a} j_{c} k_{c}$	$l \leftrightarrow k_{c}$	$l \leftrightarrow j_{c}$
$i k_{a} i_{b} k_{c}$	$i k_{a} b j_{c}$	$b i_{b} j_{c} k_{c}$	$i \leftrightarrow j_{c}$	$i \leftrightarrow k_{c}$
$l a j_{b} j_{c}$	$l a k_{b} k_{c}$	$l i a i a_{a}$	$a \leftrightarrow k_{b}$	$a \leftrightarrow j_{b}$
$l i_{a} k_{b} j_{c}$	$l i_{a} j_{b} k_{c}$	$l i j_{b} k_{b}$	$i_{a} \leftrightarrow j_{b}$	$i_{a} \leftrightarrow k_{b}$
$i a j_{b} k_{c}$	$i^{\prime} k_{b} j_{c}$	$a i_{a} j_{c} k_{c}$	$l \leftrightarrow k_{c}$	$l \leftrightarrow j_{c}$
$i i_{a} k_{b} k_{c}$	$i i_{a} j_{b} j_{c}$	$j_{b} k_{b} j_{c} k_{c}$	$i \leftrightarrow j_{c}$	$i \leftrightarrow k_{c}$
$j j_{a} j_{b} j_{c}$	$j j_{a} k_{b} k_{c}$	$j k j_{a} k_{a}$	$j_{a} \leftrightarrow k_{b}$	$j_{a} \leftrightarrow j_{b}$
$j k_{a} k_{b} j_{c}$	$j k_{a} j_{b} k_{c}$	$j k j_{b} k_{b}$	$k_{a} \leftrightarrow j_{b}$	$k_{a} \leftrightarrow k_{b}$
$k j_{a} j_{b} k_{c}$	$k j_{a} k_{b} j_{c}$	$j_{a} k_{a} j_{c} k_{c}$	$j \leftrightarrow k_{c}$	$j \leftrightarrow j_{c}$
$k k_{a} k_{b} k_{c}$	$k k_{a} j_{b} j_{c}$	$j_{b} k_{b} j_{c} k_{c}$	$k \leftrightarrow j_{c}$	$k \leftrightarrow k_{c}$

quadruples pairwise disjoint with α_{t}. Therefore, the first quadruple for a switching inside the component $R_{i j k l}^{a b c l}$ can be chosen among all $|\operatorname{SQS}(N / 4)|$ quadruples, and the second quadruple, which has no common elements with the first one, can be chosen among $|\operatorname{SQS}(N / 4)|-z-1$ quadruples. The third quadruple, which has no common elements with the first and second quadruples, can be chosen among the rest of $|\operatorname{SQS}(N / 4)|-2(z+1)$ quadruples. Proceeding the process in this way, it is easy to see that we can find at least $N / 64$ pairwise disjoint quadruples which do not have common elements. Then, there exist at least

$$
\begin{aligned}
&|\operatorname{SQS}(N / 4)| \cdot(|\operatorname{SQS}(N / 4)|-(z+1)) \cdot(|\operatorname{SQS}(N / 4)|-2(z+1)) \\
& \times \ldots \times(|\operatorname{SQS}(N / 4)|-(N / 64-1)(z+1)) \\
&>|\operatorname{SQS}(N / 4)| \cdot\left(\frac{N^{2}+16 N-512}{32}\right)^{N / 64-1}
\end{aligned}
$$

variants of such collections of 64 quadruples. As far as, given an arbitrary quadruple, there exist at least 18912 different switchings and each of them transforms the initial component into an equilibrium set, there exist at least

$$
\frac{N(N-4)(N-8)}{3 \cdot 2^{9}} \cdot\left(\frac{N^{2}+16 N-512}{32}\right)^{N / 64-1} \cdot 18912^{\frac{N}{64}}
$$

different switchings transforming the initial SQS into different $\operatorname{SQS}(N)$ s. The resulting systems are different because the different subsets of the initial set of quadruples are involved in these switchings. As for the initial $\operatorname{SQS}(N / 4)$ we can take each of the Hamming quadruple systems of order $N / 4$, the bound in the assertion becomes evident. Rank of these $\operatorname{SQS}(N)$ s depends on the rank of $\operatorname{SQS}(N / 4)$ and can exceed r_{N}.

In result of these switchings, neither $i l-$, nor $j l-$, nor $k l$-component of the initial SQS changes completely. So, after applying the above switchings, the resultant systems do not coincide with the SQSs corresponding to the extended perfect codes obtained from the extended Hamming code by the switchings of $i j k l$-components.

The proof of Theorem 4 is complete.

Corollary. The rank $r(\operatorname{SQS}(N))$ of the system $\operatorname{SQS}(N)$ obtained by means of switchings in Theorem 4 from some $\operatorname{SQS}(N / 4)$ of rank $r(\operatorname{SQS}(N / 4))$ satisfies

$$
r(\operatorname{SQS}(N)) \geq r(\operatorname{SQS}(N / 4))+3 N / 4-1
$$

The question about embedding of SQSs in Theorem 4 into the extended perfect codes is still open.

ACKNOWLEDGMENTS

The authors are grateful to N . Chumakova for useful remarks improving the paper representation.
The authors were partially supported by the Russian Foundation for Basic Research (project no. 12-$01-00631$-a) and the Federal Target Program "Research and Pedagogical Personnel for Innovative Russia" for 2009-2012 (Contract no. 8227).

REFERENCES

1. S. V. Avgustinovich and F. I. Solov'eva, "Constructing the Perfect Binary Codes by Sequential Switchings of $\tilde{\alpha}$-Components," Problemy Peredachi Informatsii 33 (3), 15-21 (1997).
2. I. Sh. o. Aliev, "Combinatorial Designs and Algebras," Sibirsk. Mat. Zh. 13 (3), 499-509 (1972) [Siberian Math. J. 13 (3), 341-348 (1972)].
3. Yu. L. Vasil'ev, "On Nongroup Densely Packed Codes," Problemy Kibernetiki No. 8, 337-339 (1962).
4. V. A. Zinov'ev and D. V. Zinov'ev, "About Vasil'ev Codes of Length $n=2^{m}$ and Duplication of Steiner Systems $S(n, 4,3)$ of Given Rank," Problemy Peredachi Informatsii 42 (1), 13-33 (2006).
5. V. A. Zinov'ev and D. V. Zinov'ev, "On Solvability of Steiner Systems $S\left(v=2^{m}, 4,3\right)$ of Rank $r \leq v-m+1$ over \mathbb{F}^{2}," Problemy Peredachi Informatsii 43 (1), 39-55 (2007).
6. V. A. Zinov'ev and D. V. Zinov'ev, "Steiner Systems $S(v, k, k-1)$: Components and Rank," Problemy Peredachi Informatsii 47 (2), 52-71 (2011).
7. D. I. Kovalevskaya and F. I. Solov'eva, "On the Steiner Quadruple Systems of Small Rank Embedable into Extended Perfect Binary Codes," Diskretn. Anal. Issled. Oper. 19 (5), 47-62 (2012).
8. D. I. Kovalevskaya, F. I. Solov'eva, and E. S. Filimonova, "On the Steiner Triple Systems of Small Rank Embedded into Perfect Binary Codes," Diskretn. Anal. Issled. Oper. 20 (3), 3-25 (2013) [J. Appl. Indust. Math. 7 (3), 380-395 (2013)].
9. D. S. Krotov and V. N. Potapov, "About Switching Equivalence of n-Dimensional Quasigroups of Order 4 and Perfect Binary Codes," Problemy Peredachi Informatsii 46 (3), 22-28 (2010).
10. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977; Svyaz', Moscow, 1979).
11. A. Ya. Petrenyuk, "Signs of Nonisomorphism of Steiner Triple Systems," Ukrain. Mat. Zh 24 (6), 772-780 (1972).
12. F. I. Solov'eva and S. T. Topalova, "Perfect Binary Codes and Steiner Triple Systems with Maximal Orders of Automorphism Group," Diskretn. Anal. Issled. Oper. Ser. 1, 7 (4), 101-110 (2000).
13. J. Doyen, X. Hubaut, and M. Vandensavel, "Ranks of Incidence Matrices of Steiner Triple Systems," Math. 163, 251-259 (1978).
14. J. Doyen and M. Vandensavel, "Nonisomorphic Steiner Quadruple Systems," Bull. Soc. Math. Belg. 23, 393-410 (1971).
15. H. Hanani, "On Quadruple Systems," Can. J. Math. 12, 145-157 (1960).
16. H. Hanani, "The Existence and Construction of Balanced Incomplete Block Designs," Ann. Math. Stat. 32 (2), 361-386 (1961).
17. H. Lenz, "On the Number of Steiner Quadruple Systems," Mitt. Math. Seminar Giessen. 169, 55-71 (1985).
18. C. C. Lindner, "On the Construction of Nonisomorphic Steiner Quadruple Systems," Colloq. Math. 29, 303306 (1974).
19. P. R. Östergård and O. Pottonen, "The Perfect Binary One-Error-Correcting Codes of Length 15. Part 1: Classification," IEEE Trans. Inform. Theory 55, 4657-4660 (2009).
20. F. I. Solov'eva, S. V. Avgustinovich, and O. Heden, "The Classification of Some Perfect Codes," Des. Codes Cryptogr. 31 (3), 313-318 (2004).
21. V. D. Tonchev, "A Formula for the Number of Steiner Quadruple Systems on 2^{n} Points of 2 -Rank $2^{n}-n$," J. Comb. Des. 11, 260-274 (2003).
22. V. A. Zinoviev and D. V. Zinoviev, "Steiner Triple Systems $S\left(2^{m}-1,3,2\right)$ of Rank $2^{m}-m+1$ over F_{2}," Problems Inform. Transmission 48 (2), 102-126 (2012).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

