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Abstract—Using the switching method, we give a classification for the Steiner quadruple systems
of order N > 8 and rank rx (different by 2 from the rank of the Hamming code of length N') which
are embedded into the extended perfect binary codes of length N and the same rank. Some lower and
upper bounds are provided on the number of these different systems. The lower bound and description
of different Steiner quadruple systems of order N and rank rx which are not embedded into the
extended perfect binary codes of length NV and the same rank are given.
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INTRODUCTION

Let F™ be the n-dimensional metric space over the Galois field GF'(2) with respect to the Hamming
metric. The Hamming distance d(z,y) between every pair of vectors z and y from F™ is the number
of coordinates in which = and y differ. The Hamming weight w(z) of x € F™ is the number of nonzero
coordinates of z. A nonempty subset C' of F™ is a binary code. A vector subspace of F" is a binary
linear code. The elements of C are called codewords. The parameters of a binary code C' from F™ are
denoted by (n,|C|,d), where n is the length of the codewords (elements of the code), |C] is the size of
the code, and d is the minimum distance of the code (i.e., the minimum Hamming distance between the
codewords). The set of nonzero coordinate entries of a vector x € F™ is called a support of z and denoted
by supp(z).

A binary code C of length n with distance d = 2d’ + 1 is called perfect one-error correcting (further
mentioned as perfect) if, for every vector z € F", there exists only one codeword y in C' such that
d(x,y) = 1. A linear perfect code of length n, called the Hamming code (we denote it by H™), is unique
up to equivalence. It is known ([10]) that perfect codes have the following parameters: length n = 2" — 1
with r > 1, 2"~ " codewords, and the minimum distance 3.

Let C be the extended perfect code of length N = 2" obtained from a perfect code C' of length
2" — 1, r > 2, by parity checking; i.e., adding the coordinate entry equals the sum by modulo 2 of all
other entries. In the sequel, we will consider only perfect and extended perfect codes containing all-zero
vector. The rank of a code C'is the dimension of the linear span of C' in F™.

[tis said that the code C" = (C'\M) U M’ is obtained by a switching of M to M’ in the binary code C
if C’ has the same parameters as C, see [1]. The set M is called a component of C. The set M is

called the il-component of the code C of length N obtained from C' by extending by Ith coordinate
i M =Ma®e; ®e forsomei € {1,2,..., N}, where e; and e; are the vectors of weight 1 with 1 in

the ith and /th coordinate entries respectively. The set R is called the ijkl-component of C if R is the
ti1ta-component for every tq,to € {i, 7, k,1}.
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STEINER QUADRUPLE SYSTEMS OF SMALL RANK 523

[t is known [20] that every extended perfect code of length N and rank ry —1 =N —log N is
a Vasil’ev code [3]. The code can be constructed by switchings of il-components from an extended

Hamming code by some function X : HV/2~1 — {0,1}. Denote the code by Viv. Up to equivalence the

code Viv has the following representation:
N _ _
Vi = {(=| + [yl + Aw), 2| + Aw),z +y,2) | @ € FNP7H g e HN271Y (1)

Let V be some v-element set, a t-(v, k, \)-design is a collection of blocks from v different elements
such that every block contains & different elements and each t-element subset from V' is appeared in
exactly A blocks. A 3-(v,4,1)-design is called a Steiner quadruple system of order v and denoted by
SQS(v) (or briefly SQS if the order of the system does not matter). Given a block (4, j, k, 1) from SQS(v),
we match up the vector from F™ with 1 only in the ith, jth, kth, and Ith coordinate entries. Further,
from the context it will always be clear if we consider blocks, supports, or vectors corresponding to
them. It is known [15] that SQS(v) exists if and only if v = 2,4 (mod 6). The supports of the codewords

of weight 4 in a code C define SQS(2") [10]. The system SQS(H, V) corresponding to an extended

Hamming code HY of length N is called the Hamming—Steiner quadruple system by analogy to
the Hamming—Steiner triple systems in [7, 12]. They are called also Boolean [5,6]. Two SQSs are
equivalent if there exists a one-to-one correspondence of their ground sets mapping the blocks of one
system into the blocks of the other.

The main problem in this field is the classification and enumeration of all nonequivalent SQSs (see the
progress in [4, 5]). The best lower [17] and upper [14] bounds on the number N (v) of all nonequivalent
SQS(v)s are as follows:

21)3/24 < N(’U) < 2113 10gv(1+o(1))/24‘

The rank of SQS(N), N = 27, is the dimension of a linear subspace in FV spanned over SQS(N).
[t is known that the rank of SQS(NN) can vary from ry — 2, which is the rank of the Hamming code of
length N — 1[13], till the full rank N — 1.

The notion of switching for SQS is defined similarly to that for the extended perfect binary code. Two
sets R and R’ consisted of 4-element subsets of V are called equilibrium if every unordered triple of
elements, which can be found in the quadruples of one set, appears also in the quadruples of the other.
[t is said that

SQS'(N) = (SQS(N)\R) U R’

is obtained by a switching from the set of blocks R to the set of blocks R" in SQS(N) if R and R’ are
equilibrium sets (see the definition of an equilibrium set in[11] and the description of switching methods
in [6]). In[6], the set R as far as the set R’ is called component.

In [21], the number Ry (V) is obtained of different SQS(N)s of rank rn — 1 which is more by 1 than
the minimal possible rank:

Ry(N) = (2ISQSOI=N2 _ 1 /N) . N1/|Sym(H, N/2)|. (2)

A parallel class in 3-(N,4,1)-design, where N = 0 (mod 4), is defined as the set of the N/4 pairwise
disjoint blocks. SQS(IV) is called resolvable if the set of its blocks can be partition into

r=(N—1)(N —2)/6

nonintersecting parallel classes. In [5], the constructions of different SQS(V)s of rank at most rx are
presented. It is proved that all these systems are resolvable and the number of all different resolvable
SQSs having some fixed parallel class is found:

2N+2 X (N/4)| . 6N(N—4)/25 . 55296N(N—4)(N—8)/(3-29)
N(N —4)(N —8)... (N — N/2)
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524 KOVALEVSKAYA, SOLOV’EVA

Since there exist N'1/24N/4 different parallel classes; therefore, using [5], we obtain that the number of
all different SQS(NV)s of rank at most rp is

oNF2Z L NI (N/4) - 6NN=4)/2° . 55096N (N—4)(N—-8)/(3-2)
24N/4. N(N — 4)(N — 8)--- (N — N/2)

[t is proved in [19] that only 15590 of 1054163 Steiner quadruple systems SQS(16) are embedded into
the perfect codes. It is shown in [22] that all Steiner triple systems of ordern =N —1=2" -1 > 7 and
rank ry are embedded into some perfect codes, but the ranks of these codes are still unknown.

In [7], the construction of SQS embedded into the extended perfect binary codes built from an ex-
tended Hamming code by the method of ijkl-components is obtained. There is given the lower bound
on the number of different such systems. It is known [1] that the codes (and also the corresponding
SQSs) obtained by this method have the rank at most 2 more than the rank of the Hamming code. But
it was unknown if there exist other SQSs embedded into the extended perfect binary codes.

This paper is a development of [7, 8]. The main results are the following: a classification of SQS(N)s,
N =2" > 8, of rank ry embedded into the extended perfect binary codes of length N and the same
rank; the proof that the class of SQS(N)s, N = 2" > 8, of rank ry obtained in [7] coincides with the
class of SQSs embedded into the extended perfect binary codes of length N and the same rank. It is
unclear if all SQSs with the rank that exceeds the rank of the Hamming SQS by at most 2 are embedded
in some extended perfect binary codes of bigger ranks. In [4], the classification of SQSs of rank rny — 1
using the concatenation approach is given; and it is shown that all these SQSs are embeddable into
the extended Vasil’ev codes of the same rank. In the presented paper, we give another proof of this fact
by the switching method. Moreover, we describe all SQS(V)s of rank ry that are not embeddable into
the extended perfect codes of length IV obtained by the method of ijkl-component from an extended
Hamming code; and the lower bound is given on the number of these SQSs.

1. THE NUMBER OF DIFFERENT SQS(N)S OF RANKS rny —1 AND 7y
EMBEDDED INTO THE EXTENDED PERFECT CODES OF THE SAME RANKS

The order of the group of symmetries of an extended Hamming code H" satisfies
[Sym(H, N)| = (N = 1)(N = 2)(N — 22) (N — 2%)... N/2, (3)

see [10, Chapt. 13]. It is known that the rank of every extended perfect code Viv of length N which is

obtained from a code H" by switchings of il-components using some function A is at most rny — 1.
Therefore, the same is true for the rank of SQS(V) corresponding to this extended perfect code, obtained
by switchings of il-components from a Hamming SQS(NNV). By this, applying the well-known Lindner’s
construction [18]foran SQS embedded into the extended perfect Vasil’ev codes, and also comparing with
the number of different SQS(NN)s of rank at most ry — 1 (obtained in [21]), we prove by the switching
method that the class of SQS(IV)s having rank rn — 1 coincides with the class of SQSs embedded into

the codes Viv of the same rank. Another proof of this fact—using the concatenation construction—see
in [4].

Theorem 1. Each SQS(N) of rank ry — 1 is embeddable into some extended perfect Vasil ev
code of length N and the same rank.

Proof. Let A be the incident matrix of a Hamming SQS(V) with V = 2". The rows of the matrix are the
binary vectors of weight 4 with 1s in the coordinates corresponding to the blocks of this Hamming SQS.
Then (see [21]) the matrix G consisting of the rows of the matrix A and the vector (1,1,0,...,0) is the

generating matrix of the code C' which contains 2/SQS(/2)l different SQS(V)s of rank at most 7y — 1.
The number of different such codes is equal to

N!
2N/2 - |Sym (M, N/2)|’
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STEINER QUADRUPLE SYSTEMS OF SMALL RANK 525

Let us prove that every SQS of the code C' is embedded into some extended Vasil’ev code Vf\v of length
N and the same rank. Since every perfect code of length N and rank at most rxy — 1 is an extended
Vasil’ev code [20], constructed from the Hamming code of length N/2 — 1 with some nonlinear function
A; therefore, we have the embeddability of each SQS from C' into some extended perfect code.

Up to equivalence an extended Hamming code " can be represented as
HY = {(al + gl el + y,2) | @ € BV y e w2, (4)

A codeword of weight 4 of the code C is either a row of the matrix A, or is obtained by adding

(1,1,0,...,0) to the codeword of weight 4 from Y having nonzero first or second coordinates (i.e.,
of the type (1,0,...) or (0,1,...)), or is obtained by adding (1,1,0,...,0) to the codeword of weight 6

from H" with the first two nonzero coordinates (i.e., of the type (1,1,...)).

Let Ag, A1, As, and As denote the set of rows of the matrix A such that the first two elements are
equal to 1, the first element equals 1 and the second is 0, the first element is equal to 0 and the second
to 1, the first two elements equal 0 respectively.

Let By, Bo, and Bj stand for the sets of weight 4 of the vectors

e with the first coordinate equal to 1 and the second equal to 0 that are obtained by adding the vector
(1,1,0,...,0) to the rows of As,

e with the first coordinate equal to 0 and the second equal to 1 that are obtained by adding the vector
(1,1,0,...,0) to the rows of Ay,

e with the first two coordinates equal to 0 obtained by adding (1, 1,0, ...,0) to the codewords of
weight 6 from H of the type (1,1,...) with the first two nonzero coordinates.

Then, by [21], the different SQSs are obtained by switchings of some k" rows of A153 = A1 U Ay U A3
by some appropriate k&’ rows of the matrix Bya3 = B; U Bo U Bs. The sets of triples corresponding to the
rows will be equilibrium sets. The sets of such rows we also call equilibrium. Moreover, Aj93 and Biag
can be partition into the subsets consisting of 8 blocks so that, for every eight blocks from Aja3, there
exits a unique set of eight blocks from Bjas; i.e.,

k/ :8t/, 1 St/ < \‘(N+3)(AN19_22)(N_4)J

Define the function A : HV/2=1 — {0,1} for the code V' containing SQS obtained in result of the
following switching: for the vectors of weight 3 and (or) 4 corresponding to the &’ replaceable rows
of A1o3 and the &’ replacing rows of Byag, put A = 1; for the other vectors from HN/2-1 put A =0.

Let y € HN/?~1 be a vector with the support {ay, as, as}, where A = 1. Then, in FN/2=1 there exist
the three vectors of weight 1 intersecting y in one coordinate entry. By the construction of Viv, every of
these three vectors together with y defines the weight 4 vectors in Viv of the type

N N
+1+a1>, (1,a1,a3, +1+a2>, (1,a1,a2, 9 +1+a3),

N
(17(127(137 5

2
corresponding to the weight 4 vectors in HY of the type

N
+]~+a2)7 (2,@1,&2,

N
+1+a1>7 (2,(11,@3, 9

N
(276’02,@3, 5

9 +1+a3)

respectively.
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We can find the three weight 2 vectors in FN/2=1 intersecting ¥ in two coordinate entries. By the

construction of Viv, every of these vectors together with y generates the weight 4 vectors in Viv of the
type

N N N N
(2,a3,2+1+a1,2+1+a2), (2,&2,2+1+a1,2+1—|—a3),
N N
(201, +14az ) +1+as),
2 2
that correspond to weight 4 vectors in H of the type
N N N N
(Las, ) +1+a, ) +1+a),  (Las ) +1+a, ) +1+as),
2 2 2 2
N N
(1,01, 9 + 1+ asg, 9 +1+a3)

respectively.
Moreover, using the vector 0N/2=1 and the weight 3 vector from F/2~1 with the support {ay, as, as},
we additionally obtain the vectors from Vf\v of the types

N N N
(2,&1,&2,&3), (17 9 +1+4a, 9 + 1+ aq, 9 +1+a3)

corresponding to the weight 4 vectors in H™V of the types

N N
(1,@1,@2,@3), (27 +]~+a17

N
5 2+1+a2,2+1+a3)

respectively.

In result, we have the two equilibrium sets in Viv and HN, each one containing eight quadruples.

Let y = (by, by, b3, by) be the vector with the support {b1, by, b3, by} such that A(y) = 1. In FN/2-1,
there exist the four weight 1 vectors intersecting y in one coordinate entry. By the construction of Vf\v,
these vectors together with y define the weight 4 vectors in Viv of the type

N N
(mw&m,2+1+m) (mm&m,2+1+@)

N N

(b17b27b47 9 9

+1+103), b1,b2,b3, , +1+by).
A )

The four weight 3 vectors exist in FV/2=1 which intersect y in three coordinate entries. By the
construction of Viv, each of them together with y generates the weight 4 vectors in Viv of the type

N N N N N N
<b47 9 +1+b17 2 +1+b27 2 +1+b3)7 (b37 2 +1+b17 2 +1+b27 2 +1+b4)7
N N N N N N
<b2,2—|—1+b1,2—|—1+b3,2—|—1—|—b4), (b1,2—|—1—|—b2,2—|—1—|—b3,2—|—1—|—b4).

There exist the six weight 2 vectors in FN/2=1 intersecting 3 in some two coordinates so that, by the
construction (4), together with y they define in " the following weight 4 vectors of the type

N N N N
@&m,2+1+m,2+1+b9, @%m,2+1+m,2+1+m)
N N N N
(bg,bg, , F1+bL +1+b4), (bl,b4, , 1+l +1+b3>,
N N N N
@bm,2+1+m,2+1+a0, @b@,2+1+m,2+1+m)
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Moreover, we have in F¥/2=1 the unique all-zero vector and a unique weight 4 vector with the support

{b1, ba, b3, by} such that, by the construction (4), together with y they define the weight 4 vectors in Y
of the type

N N N N
(b1, b2,b3,by), (2 +1+by, 5 + 1+ by, 5 + 1+ b3, 5 +1+b4>

respectively. Therefore, we can conclude that we obtain the two equilibrium sets and each contains eight

vectors. These are the subsets from Viv and 1 respectively. Note that the sets of quadruples from the
first and second cases under consideration do not intersect each other. Both equilibrium sets of eight
quadruples correspond to the switchings described in [21].

Hence, the system SQS obtained by switchings of some &' row of the matrix A; U As U Ag by

equilibrium &’ rows of By U Bs U Bs is embeddable into the code Vf\v by the above-defined function A.
Since all extended codes of length N of the rank at most 7y — 1 are the Vasil’ev codes of length N

obtained from the Hamming code H™/2~1 by construction (1), each SQS(N) of rank ry —1 is
embeddable into some extended perfect Vasil’ev code of length N and rank r5 — 1. Moreover, there
exist

2ISQSIN/DI=N/2 . N1\ /Sy (H, N/2)

different such SQSs. Taking it into account that, by [21], the number of SQS(NN)s having rank ry — 2 is
equal to N!/N - |Sym(H, N/2)|, we obtain (2). This completes the proof of Theorem 1.

Note that the described switchings correspond to the switchings under transition from SQS(N)
obtained by the Hahani’s construction [16] to SQS(V) obtained by the Aliev’s construction [2]. It is
known that the Lindner’s construction is a generalization of the Hahani’s construction [18].

Let R(H, N) denote the number of different SQS(H, N)s of order N. Taking into account (3), we
have

N!
~ [Sym(H. N)|
By [1], the rank of an extended perfect code of length IV obtained from an extended Hamming code

of length N by switchings of ijkl-components is at most ry. Therefore, the rank of SQS(/N) obtained
from a Hamming SQS(V) by switchings of ijkl-components is at most ry. We have

R(H, N)

Theorem 2 [9]. Each extended perfect binary code C of length N and rank at most ry can be
obtained from some extended Hamming code by consecutive switchings of il-components using
at most two coordinates (il- and jl- for some i, j, 1).

In [7, Theorem 4], it is presented the construction of a Steiner quadruple system and the corre-
sponding switchings of il- and ijkl-components which allow us to obtain from a Hamming SQS(N)
some SQS(N) of a bigger rank. Denote the class of SQS(NNV)s of rank r obtained in such a way by
Sw(SQS(N),r).

Let
_ _ _ 2 _ _
P(N) = (2296N(N 342)S()N N <2N(13v2 Ol 1) N —|—12N+8> ‘ N(N —1)(N 2)’
4 8
S(N) = 218as(3)I- Y. N
|Sym(H, N/2)|

The main result of this paper is

Theorem 3. The class Sw(SQS(N),rn) coincides with the class of SQS(IN)s embeddable into
the perfect codes of the same rank constructed from an extended Hamming code of length N by
the method of ijkl-components. The number Ro(N) of these different SQSs satisfies

PN)R(HsN/4) — S(N) < Ry(N) < P(N) - R(H, N) — S(N).
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Proof. By Theorem 4 in [7], the number of SQS(N)s built by the method of ijkl-components from
a fixed SQS(N/4) and the set {4, j, k, [} is equal to

N(N—4)(N—8) N(N—4)
92296 .29 .3.<2 25 —1).

Note that SQS(NN)s obtained from different SQS(/N/4)s by means of different switchings are dis-
tinguished. Indeed, let S1(N) and S2(V) be two equal SQS(NN)s obtained by method of switchings of
ijkl-components from different SQSs, say S1(/N/4) and S3(IN/4) of order N/4, by means of different
switchings. Then there exist some different elements a, b, ¢, d, and e irom the set M such that

(CL,b,C,d) €S1(N/4)7 (a,b,c,e) ESQ(N/4)
For the equality of S1(N) and So(N) it is necessary that for the two collections of 64 quadruples
corresponding to the matrices Typcq and Tiypee (see [7]) be obtained one from the other by the switchings
d €, Z.d — iea jd < jea kd A ke-

But the method of ijkl-components admits the switchings of elements of the form d, 4, j4, kg Which
belong to the same column of the initial table and does not admit the switchings between the elements
of the form dig, jq, kq and e, i., je, ke Which belong to different columns of the initial table. Therefore, it is
impossible to obtain some equal SQS(N/4) from different SQS(NN/4)s by means of different switchings.

As we choose an arbitrary quadruple (4, 7, k, 1) from SQS(NV), we have
N(N—4)(N—-8) N(N—4)
2296 329 -3-(2 22 —1)-[SQS(N)|-R(H,N/4) (5)
systems of order N. Let us understand which of them can coincide.

Consider an arbitrary SQS(H, V) that corresponds to a fixed table Ty (see [7]) and a SQS(H, N/4).
While different partitions of the system SQS(H, V) into the components and further applying switchings
of 1jkl-components to it, the same SQS(H, V) can appear. Let us carefully study these situations.

Fix some quadruple (i, 7, k,1) € SQS(H, N) and an arbitrary element from {3, j, k}, for example, 3.
In this case, we have a partition of the initial SQS(H, V) into il-components. It is easy to see that
SQS(N) that is obtained from the initial SQS(H, N) by switching [ < i applied to all quadruples
containing the elements [ or i coincides with SQS(H’,N) that corresponds to the Hamming code
H = (li)H obtained from the code H by applying the permutation (I7). The same is true for switchings
Jj < k,a < i, and j, < k, for each a € M\[, as well as for the partition of the initial SQS(H, N) into
jl- and kl-components; i.e., for the switchings

le—j, ik aejq, iq < kg, and lek, ie§, aeky ige ja
foreach a € M\Il. Hence, we have 3-2- (1 + (N/4 — 1)) = 3N/2 repetitions.

We can also partition the initial SQS(H, V) into il-components and first apply the switching [ < i

to all ijkl-components of this SQS(H, N), containing the elements [ and i; after that we can choose
the element j or k and apply one of the switchings [ < j, i <> k, a < jg,, iq < kg for each a € M\[ or
l = ki j,a< kg iq < joforeach a € M\l toall Ij- or lk-components, containing elements from
the chosen switching. The so-obtained SQS(V) coincides with the SQS(H’, N) corresponding to one
of the Hamming codes

(lig)H, (ki)H, (li)(aja)H, (li)(iqke)H or (lik)H, (lji)H, (1i)(aks)H, (1i)(iaja)H,
obtained from H by means of the corresponding permutations. It is easy that these two codes coincide.
The same argumentations are also true if we would choose one of the switchings j < k, a < i,
and j, < k, as the initial switching and if the initial SQS(H, V) would be partitioned into ji- or kl-
components. Thus, wehave3-4-2-(1+1+4+ N/4 -1+ N/4 —1) = 12N repetitions.

Let us note that SQS(INV) which is obtained from the initial SQS(H, N) while partitioning it into
ijkl-components and further applying the switching a < i, to all il-components containing a and i,
coincides with SQS’(IV) which is obtained from the initial SQS(H, N) while partitioning it into ii4t;to-
componentsiandfurtherapplyingthe switching a < i, to all ii,-components containing a and i,. Since
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there exist exactly N/2 — 1 quadruples of the type #i,t1t2, we obtain N/2 — 1 repetitions. The same
fact is true for the switching j, < k, and also for the switchings a < j, and i, < k, applied to the ji-
components, as well as for the switchings a < k, and i, < j,, applied to the kl-components. Hence,
we obtain 6(N/2 — 1) repetitions. These argumentations are true for every a € M\[; therefore, we have
(N/4—1)(3N —6) = 3(N — 2)(IN — 4)/4 repetitions.

Thereby, for the chosen partitioning into ijkl-components we obtain
3N/2 4 12N 4+ 3(N — 2)(N —4)/4 = 3(N? + 12N +8)/4
repetitions. Since (4, j, k, 1) is an arbitrary quadruple from SQS(H, V), where
ISQS(H, N)| = N(N — 1)(N —2)/24,
we have the total of
N(N —1)(N —2)(N? + 12N +8)/32

repetitions. Taking into account the calculated in (5) number of SQS(N)s which includes the identical
ones, we obtain the lower bound of the number of different SQS(V)s built from a fixed table @ and base
SQS(m) by means of the above-mentioned construction:

_ _ B 2 B _
<2296N““ LYY ) - N? + 142N+8> NV ;)(N %)

Since there exist R(H, N/4) extended binary Hamming codes, we have at least
)

N(N-4)(N-8) N(N-4) N2 + 12N N(N —1)(N -2
(2296 a2 .<2 5 —1)— +4 +8>- ( 8)( ) R(H, N/)

extended perfect codes of length N that are built from the extended Hamming code of length N by
means of the switchings of ijkl-components. The switchings of ijkl-components can be applied to

at most R(H, N) extended Hamming codes of length NV; therefore, we have at most

_ _ - 2 _ _
(2296N(N SN <2N(§s Y1) - N 142N +8> N 18)(N 2 R, N

extended perfect codes of length NV which can be obtained from the extended Hamming code of length
N by switchings of ijkl-components and to which all different SQS(V)s of rank at most r 5 correspond.
By Theorem 2, we obtain that there is no other SQS(V)s of rank at most r y embeddable into extended
perfect binary codes of the same rank. Since, by Theorem 1, there exist exactly
2ISQSIN/DI=N/2 . N1 /|Sym(H, N/2)|
different SQS(N)s of rank at most ry — 1 embedded into extended perfect codes of length N and the
same rank, we have the bound given in the statement of the theorem.

The proof of Theorem 3 is complete.

2. THE STEINER QUADRUPLE SYSTEMS NOT EMBEDDED
INTO THE EXTENDED PERFECT CODES OBTAINED BY THE METHOD
OF SWITCHING OF ijkl-COMPONENTS

Theorem4. Let R'(N) be the number of different SQS(N)s of order N > 128 and rank ry which
are not embeddable into the extended perfect binary codes that are obtained by the method of
switching of the ijkl-components from an extended binary Hamming code. Then

-1891281 - R(H, N/4).

RNy > NN -V =8) <N2+ 16N_512>N/64—1
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530 KOVALEVSKAYA, SOLOV’EVA

Table 1.

Rlgbel  Roabel  plabcl  Riabel  paabl  Roabel  RTabcl  plabel
abel —agpjel  jabjel  Jagecl  jabje  jajee  jjabc  jjajvjc
aivicl  akpkel  Jaivkel  Jakvicl  jaivke  jakvic  jjaivic  Jjakvke
iabicl iajokcl  kabkcl  kajvicl  jiabke  jiajvic  jkabic  jkajvke
iatpcl  akpjel  katpjel  kokpel  jiaivje  Jiakve  jkaive  jkakpje
iabic  dajpke  ijobke  ijajeic  kabke  kajpic  kjabic  Kkjajuke
iaipe  iakpje  ijaivje  ijakpe  kaipje  kakpye  kjaive  kjakpje
itgbe  iigjpje  tkabje  ikajoc  kigbje  Kiajoc  kkobe  kkajeje
alpte  tigkpke tkaipje tkakpte kigivke kigkpic kkaipic kkokpke

Proof. Consider SQS(H, N) obtained by the method of [7, Theorem 1] and the components R

and R}, therein. Recall that R}, is the linear span of the vectors with the supports
{ijkl,iaiql,ijakal | @ € M\I}.

The component R{f¢ and its partitioning into il-components R}*, ... RS are represented in
Table 1.

Every component RY¢ ... R84l can be partitioned into two subsets of equal total size so that to
Rigbel and Riabel . Ri@l”d and Rgglbd there corresponds the same four-element subset Ryy;, ..., Ry
from R}, respectively; and moreover, for each of the sets

label label Sabel Sabel
R URy, Ry URyy, ..., RU7“URsy, RS U Rs,

the switchings of elements which transform these sets to the equilibrium are allowable.
For example, the component

RY® — Label, aiyicl, igbicl, iqiycl, iabie, iaiyc, iighc, iiqiyic}

can be represented as

RY® — Label, aiyicl, iigbe, iiqiyic} U {iqbicl, iqipcl, iabic, iaiyc},
ie.,
labcl labcl
R = {abcl, aiyicl, iighe, tigipic}, Ry = {igbicl, iqipcl, iabic, iaipc}.

Then the set corresponding to them looks as
Ry = {ibipl, icicl, abigip, acigic},

and each of the sets RI%! U Ry; and R1%< U Ry, allows the switchings

b« i, [ < g, a < ig, c
and

b+ c, ip < e, [+ a, 1 1
correspondingly. Each of the switchings

b« i, [ < g, a < g, c iy
transforms the initial set Rlabd U Ry, into the same set equilibrium to it. Also, each of the switchings

b+ c, iy < g, [ < a, 14> 0g
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transforms the initial set R1%! U Ry to the same equilibrium set.

There exist at least three such different partitions of each of the components R}, ... R&abel,

Let us note that the above-listed cases do not exhaust all possibilities, which allows us to obtain
only the lower bound on the number of SQS(NN)s of rank 7y such that they are not embeddable into the
extended perfect binary codes of length N and the same rank.

In Tables 2—4, all partitions of the components, the sets from R}, corresponded to them, and the
possible switchings in each of the three cases are specified. Many of the sets R?.,, € {1,...,8} and
s € {1,2,3}, intersect between themselves for fixed s and different r as well as for different s and r.
Therefore, it is impossible to apply switchings to all of the sets independently.

From the Tables 2, 3, and 4 we can see that the sets

1 1 1 1 1 1 1 1.
Ry, Roys Reys Rgy and Rgi1, Ry, Rsis Reis

2 2 2 2 2 2 2 2 .
Ry, R3y, Rei, Ria and R3;, Ry, Rsiy Rogs

R?il’ Riil’ Rgil’ Rgil and R%il’ Rgil’ Rgil’ R?il
correspondingly do not intersect between themselves. Thereby, we have 6 collections of pairwise disjoint
sets.

Since to each of the four sets of the form R?

s from every collection there correspond two sets of the form
RTabely RS, and RyePLU RS, and we can apply (or do not apply) the allowable switching to any of them;
therefore, each collection allows 3* — 1 different switchings. Also, the next composite sets compounded
from different Tables 2—4 do not intersect each other:
R%ila Rslsz‘za R%il? R%il? Riil? Rgil; R%ila Rslsz‘za Rgila Rgila R%ila R?m
Ry, Ry, R%il’ Rgil’ Rgil’ Rg’il? Ry, Ry, Riila R%ilv R:{’ila Rg’il?
Riy, Ry, Riy, Rig, Rig, Riy; Riy, Ry, Rig, Riq, Ry, Riys
Riila Réilv R%il’ R%il’ Rgil’ Rgil? Riila Réilv Rgilv Rgilv R?ila Rgil'
Hence we also have eight collections of pairwise disjoint sets. Since two sets of the form R U RS,
and Rgff’d U R?,, correspond to each of the six sets of the form R;; from every collection and we can

apply (or do not apply) an allowable switching to each of them; therefore, each collection allows 3% — 1
different switchings.

As far as the above-listed tables contain the partitions of the components and the switchings which

transform them to the equilibrium sets, the resulting quadruple systems are SQSs. Hence, for the

partition of Rff,jf into il-components we obtain at least

6-(3'—1)+8-(3°—1)=2-3%(1412) — 14 = 6304

different switchings. For the partition of Rff,jf into jl- and kl-components the situation is similar.

Therefore, for each quadruple from SQS(IN/4), we have 3 - 6304 = 18912 different switchings. In order for
switchings could be applied to the components of the form R%tkl for different quadruples o, € SQS(N/4)

independently, these quadruples should not have common elements. As for each quadruple «; from
SQS(IN/4) there exist 4(N — 4)(N — 8)/3 - 2° quadruples which have the only common element with
the initial quadruple, and there exist 3N/4 — 18 quadruples which have two common elements with the
initial quadruple, for a; there are exactly

2= (N—-4)(N—-8)/3-23+3N/4—18 = (N? + 6N — 376)/24
quadruples having common elements with it and

ISQSN /4] — 2 = (N—4)(Ng8)(N—64) 9 31\7 -
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Table 2.
Ryabel Ryabel RL, switchings R7%'U RL,  switchings R4\ U RZ,
labe ligbi, libiy b i, b—c
laiyi, ligipc lici, IR 1y < 1
ii.bc iaipc abiyip a1 l+—a
1lalple iabi, aciglc C < 1 1 1g
Jiabe  jkabie  jkbiy b i, bo e
JJatvlc Jkaipc Jkcic c i ip < e
kkqbe kjabic — jakabip J < ka J < Ja
kkaipic kjaive  jakacic k< ja k kg
Jjajec JtaJvlc Jkgvk Jb < e Jp ¢
jakpic Jiaksc jkcic ky < ¢ kp < i,
Kiqjoc kajpic — aiajvke J i Jea
kigkpic kakyc Aty Cle k< a k i,
Jjabje Jiabke Jkbiy b ke b Je
Jaipke Jialvje  Jkjcke i < Je ip < ke
kigbje kabk, aiybip J g jea
kigipke kaipje aigjcke k< a k< iq
ljajoc lkajbic lijpksy Jb < e Jp ¢
ljakyic lkykyc lici, ky < ¢ ky < e
ikajbc iJajvic  Jakajvky l & ke L= Ja
ikakpic ijakve  Jakacic i Ja i kg
liabje  lkabke  libiy b ke b
ljatvke  lkaipje ligcke i < Je ip < ke
ikabje ijabke  Jakabip l & ke L= Ja
ikaivke  ijaivje  Jakajeke i Ja i kg
lajpje liajoke Ligpke Jb < ke Jb < Je
lakpk. licksje lijcke ko < je kp < ke
1aJbje iajpkc aiafoky l < ig l<a
tigkpke iakpje atgjcke i< a 14> g
JJadvje  Jkajoke  jkjvke Jb < ke Jb < Je
Jjakvke  jkakeje  jkjcke ko < je kp < ke
kkajvje  kjajoke  Jakajvke J < kq J < Ja
kkokoke  kjokvje — Jakajcke k< Ja ke k,
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Table 3.
Ryabel Ryabel R%, switchings R7%' U R%,  switchings R4 U R,
labe laiyi, liaig a < i a<c
ligbic ligipc lici, tg < C tg < ¢
iaipc iabi, abiyip [ < 14 b
1lalple ii,bc beiyie i+b 1 <> 1p
JJabe Jiatvic  Jkjaka Ja < e Ja < c
Jjkabic Jkaipc jkcic ke < cC ko < e
kjaive kjabic — jakabip Je Jeb
kkqipic kkqbc beipic kb k <
jajpc jakpic jkai, a < i a<c
JiaJblc Jiakpe Jkcic g < C iq < e
kakyc kajyic Jokpaiq J <k J < b
kigkpic kiqjoc Jokpcic k< gp k — ky
jabj. Jaipke jkai, a < ke a < Je
Jiabke Jiatbje Jkjcke lqg < Je iq < ke
kaipj. kabk, aiybip j i jb
Kigivke  kigbje  bipjoke ko b ko iy
ljagve ljakpic lijaka Ja < e Jac
lkqgyic lkokpe lici, ke < cC ko < e
ijakpc iJajvic  Jakajvky ) L Jp
ikakpic ikqJue Jokpcic i< Jb i ky
ljabje ljaivke lijaka Ja < ke Ja < Je
lkqbk. lkainje lijeke ko < Je ko < ke
iJalbje ijabke  Jakabip ) l<b
tkaipke 1kabje biyjcke i+ b 1 <> 1p
lajpjec lakpk, liai, a < ke a < Je
liajoke  lidkpje lijcke lqg < Je iq < ke
iakpj. iajpkc aiafoky ) L Jp
itakpke  iajvje  Jokbjcke L b i ky
JJadvje  Jlakeke  jkjaka Ja < ke Ja < Je
Jkagoke  jkakeje  jkjcke ko < Je ko < ke
kjakvje — kjajoke  Jakajvke J < kp J b
kkokpke — kkajoje — Jokojcke k< jb k< ky
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Table 4.
Rygpel Ryapel R3, switchings R7e' U R%,  switchings R5a' U RS,
labe laiyi, liai, a1 a<b
ligipc ligbi, libiy iqg & b tq < p
iabi, iaipc aclgic [+ 1, l—c
1lqlple iigbe beipic 1> ¢ 1 Q¢
JJabe JJalblc Jkjaka Ja < i Ja b
Jkaisc Jkabic jkbiy ko < b ko < ip
kjabic kjaive JakaCic J e Jjec
kkyipic kk,bc biyci, k<c k< i,
Jjajec Jakpic Jkaiq a < ky a < jp
Jiakype JtaJvlc Jkjvkey iq < Jb iq < Ky
kajpic kakyc A1y Cle j i jec
kigkpic kigjpC Jpkpcic k—c k< i,
jabj. Jaipke jkai, a1 a<—b
Jialbje Jiabke Jkbiy o < b g < b
kabk. kaipje aiajcke J < ke J < Je
kigipke kiabje bivjcke k< je ke k.
ljagve ljakpic lijaka Ja < kb Ja < Jb
lkokpe — Thkagpic liguks ko < Jb ko < ky
ijajblc ijakve  JakaCic L e l—c
ikakpic  ikajoc  jukcic i e i e
ljabje ljatvke lijaka Ja < @b Ja b
lkaivje lkq bk, libiy ko < b ko < ip
ijabkec ijalbje  Jakajcke L ke L= e
tkaipke tkabje bipjcke 1> Je 1 ke
lajpjec lakpk, liaig a < kyp a < Jp
ligkpje ligjvke lijpksy g < Jb iq < K
iajpkec iakpje aigjcke l k. L Je
itgkpke ilajbjc  Jokbvcke L Je i ke
JJadvje  Jiakeke  jkjaka Ja < kb Ja < Jb
Jkakvje  Jkagvke  jkijvke ko < Jb ko < ky
kjajoke — kjakvje  Jakajcke J < ke J < Je
kkokvke — kkajojec — jokbjcke k< je k k.
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quadruples pairwise disjoint with . Therefore, the first quadruple for a switching inside the component
R?}’,ﬁf can be chosen among all |[SQS(N/4)| quadruples, and the second quadruple, which has no

common elements with the first one, can be chosen among [SQS(N/4)| — z — 1 quadruples. The third
quadruple, which has no common elements with the first and second quadruples, can be chosen among
the rest of |[SQS(IN/4)| — 2(z + 1) quadruples. Proceeding the process in this way, it is easy to see that
we can find at least N/64 pairwise disjoint quadruples which do not have common elements. Then, there
exist at least

[SQS(N/4)] - (ISQS(N/4)| = (2 +1)) - (ISQS(N/4)| - 2(2 + 1))
x ... % (|SQS(N/4)| — (N/64 — 1)(z + 1))
N2 4 16N — 512>N/64‘1
32

variants of such collections of 64 quadruples. As far as, given an arbitrary quadruple, there exist at least
18912 different switchings and each of them transforms the initial component into an equilibrium set,
there exist at least

> 1SQS(V/4)] - (

329 32

different switchings transforming the initial SQS into different SQS(V)s. The resulting systems are
different because the different subsets of the initial set of quadruples are involved in these switchings.
As for the initial SQS(IN/4) we can take each of the Hamming quadruple systems of order N/4, the
bound in the assertion becomes evident. Rank of these SQS(V)s depends on the rank of SQS(V/4) and
can exceed rp.

In result of these switchings, neither il-, nor jl-, nor kl-component of the initial SQS changes
completely. So, after applying the above switchings, the resultant systems do not coincide with the
SQSs corresponding to the extended perfect codes obtained from the extended Hamming code by the
switchings of ijkl-components.

The proof of Theorem 4 is complete.

B B 2 B N/64—1
N(N —4)(N —8) (N + 16N 512> oo

Corollary. The rank r(SQS(N)) of the system SQS(N) obtained by means of switchings in
Theorem 4 from some SQS(N/4) of rank r(SQS(N/4)) satisfies

r(SQS(N)) > r(SQS(N/4)) +3N/4 — 1.
The question about embedding of SQSs in Theorem 4 into the extended perfect codes is still open.
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